CC-90009 is a novel cereblon E3 ligase modulator (CELMoD) currently under investigation in a phase I clinical study in relapsed or refractory acute myeloid leukemia (R/R AML) (CC-90009-AML-001; NCT02848001). CC-90009 coopts the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex to target the translation termination factor G1 to S phase transition 1 (GSPT1) for ubiquitination and proteasomal degradation, resulting in rapid induction of apoptosis and growth inhibition in AML cell lines and primary patient blasts.

To further elucidate the mechanism of action of CC-90009 in AML, we performed a genome-wide CRISPR/Cas9 screen to identify gene(s) whose knockout abrogate(s) the response to CC-90009 in a sensitive AML cell line. In addition to well-established key regulatory proteins required for the activity of all known cereblon modulators, which include components of the CRL4CRBN complex, E2 ubiquitin conjugating enzymes UBE2G1 and UBE2D3, and members of the neddylation and deneddylation machinery, interestingly, the screen identified the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreased the production of full-length CRBN transcript via modulating alternative splicing of CRBN mRNA, leading to significant downregulation of cereblon expression and hence diminished response to CC-90009. The screen also revealed that mTOR signaling and the integrated stress response (ISR) specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Since CC-90009 inhibits protein translation, it is reasonable to expect interactions with regulators of this pathway. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 , at least in part by reducing CC-90009 induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Loss of GCN2 significantly attenuated the growth inhibitory effect of CC-90009, and this effect can be rescued with GCN2 wild-type but not enzymatically-dead mutants.

Collectively, the antitumor activity of CC-90009, a first-in-class GSPT1 degrader, in AML cell lines is mediated by multiple layers of signaling networks and machinery, the elucidation of which reveals the underlying mechanism by which CC-90009 exerts its anti-AML activity and informs on the pathways for further study of CC-90009's clinical utility.

Disclosures

Lu:Celgene Corporation: Employment, Equity Ownership. Surka:Celgene: Employment, Equity Ownership. Lu:Celgene Corporation: Employment, Equity Ownership. Jang:Celgene: Employment, Equity Ownership. Wang:Celgene: Employment, Equity Ownership. Rolfe:Celgene: Employment, Equity Ownership.

Author notes

*

Asterisk with author names denotes non-ASH members.

This icon denotes a clinically relevant abstract

Sign in via your Institution