Background. p53 is a well defined tumor suppressor involved in the modulation of cell proliferation, cell cycle progression and programmed cell death. BLIMP-1 plays a crucial role in modulating B-cell differentiation towards Ig-secreting plasma cells, and it acts as a tumor suppressor, as documented in both diffuse large B-cell lymphoma and Burkitt lymphoma. Whether B-cell specific loss of both p53 and BLIMP-1 may favor a B-cell lymphoma phenotype remains unanswered. We therefore aimed to generate in vivo dual p53/BLIMP-1-floxed conditional inactivation in B-cells, and to define the functional relevance of both p53 and BLIMP-1 n B-cell lymphomagenesis in vivo

Methods.Cre recombinase under the control of CD19 promoter (C57BL/6 CD19Cre/Cre) mice were crossed with either C57BL/6 BLIMPflox/flox or C57BL/6 p53flox/flox mice to achieve deletion of BLIMP or p53, respectively, in B cells. Secondly, CD19Cre/Cre BLIMPflox/flox mice were crossed with CD19Cre/Cre p53flox/flox to achieve concomitant deletion of both BLIMP and p53 in B cells (CD19Cre/Cre BLIMPflox/flox p53flox/flox), referred as CD19/Bl-/p53- mice. Transgenic experimental mice (CD19/Bl-/p53-) where characterized for B cell infiltration using immunohistochemistry, flow cytometry; clonotypic immunoglobulin heavy-chain rearrangement was assessed by Southern Blotting. Whole exome sequencing was performed using DNA isolated from B220+ selected cells obtained from pathological lymph nodes of CD19/Bl-/p53- mice and from matched tail-derived tissues, used as germline (Illumina HiSeq 2500 platform; Agilent SureSelectXT). MTT assay was used to BTK-inhibitor-dependent cytotoxicity using CD19/Bl-/p53-derived B220 cells.

Results.We generated dual p53/BLIMP-1-floxed conditional inactivation in B-cells, using mice expressing Cre recombinase under the control of CD19 promoter. 100% of the CD19/Bl-/p53- mice presented with diffuse lymphadenomegalies, and splenomegaly, hepatomegaly (90.3% and 77.4%, respectively). Other clinical manifestations included presence of ascites and hind lymb paralysis (12.9% and 19.3%, respectively). The CD19/Bl-/p53- showed worse survival compared to Bl-/p53- mice non-expressing the CD19/Cre recombinase, CD19/p53-, or CD19/Bl- (363, 469.5, 460.5, and 770 days, respectively). H.E. staining of CD19/Bl-/p53--derived lymph nodes, defined a nodal architecture with a monomorphic population of large sized atypical lymphoid cells with finely clumped and dispersed chromatin, and multiple basophilic medium sized, paracentrally situated nucleoli. A "starry sky" pattern was also observed. Overall, these features are compatible with a high-grade lymphomas. IHC analysis confirmed a marked positivity for B220 staining (TdT, Bcl6, CD138 and CD4, CD8 negative). Tumors were confirmed to be B220+/IgM+, with either Igk- or Ig-lambda-restriction as demonstrated by flow cytometry; and either mono- or bi-clonal, as demonstrated by Southern blotting, thus further confirming the clonal transformation induced by dual BLIMP/p53 deletion in B cells. Whole exome sequencing was performed from B220+ selected cells obtained from pathological lymph nodes of CD19/Bl-/p53- mice and identified 143 SNVs. Among them, non-synonymous somatic mutations were mapped on genes involved in the regulation of focal adhesion, PDGF signaling, p53-downstream pathway, and lipoprotein metabolism. B220+ cells selected from CD19/Bl-/p53--derived lymph nodes were implanted subcutaneously into recipient SCID/Bg mice (n: 10), and presented with 100% engraftment, with a monomorphic lymphoid infiltration of B220+ and IgM+ cells. B220 positive cells were selected from the s.q. tumor and intravenous injected into recipient SCID/Bg (n: 10) and BL/6 mice (n: 10). Engraftment was demonstrated in all the mice, where hepatomegaly, splenomegaly and hind lymb paralysis were observed. Infiltration of B220+ cells was documented within bone marrow, liver and spleen. We next investigated the anti-tumor activity of BTK-inhibitor, and found that B220+ cells selected from lymph nodes harvested from CD19/Bl-/p53-mice were sensitive to ibrutinib treatment.

Conclusion. These studies demonstrate that the specific dual inactivation of p53 and BLIMP in B-cells promotes oncogenic transformation, resulting in aggressive B-cell lymphoma development.

Disclosures

Ghobrial:Celgene: Other: Advisory Board; BMS: Other: Advisory Board; Amgen: Other: Advisory Board; Takeda: Other: Advisory Board; Janssen: Other: Advisory Board. Roccaro:Takeda Pharmaceutical Company Limited: Honoraria.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution