Abstract 68

Early T-cell precursor acute lymphoblastic leukemia (ETP ALL) is characterized by an immature T-lineage immunophenotype (cCD3+, CD1a-, CD8- and CD5dim) aberrant expression of myeloid and stem cell markers, a distinct gene expression profile and very poor outcome. The underlying genetic basis of this form of leukemia is unknown.

Here we report results of whole genome sequencing (WGS) of tumor and normal DNA from 12 children with ETP ALL. Genomes were sequenced to 30-fold haploid coverage using the Illumina GAIIx platform, and all putative somatic sequence and structural variants were validated. The frequency of mutations in 43 genes was assessed in a recurrence cohort of 52 ETP and 42 non-ETP T-ALL samples from patients enrolled in St Jude, Children's Oncology Group and AEIOP trials. Transcriptomic resequencing was performed for two WGS cases, and whole exome sequencing for three ETP ALL cases in the recurrence cohort.

We identified 44 interchromosomal translocations (mean 4 per patient, range 0–12), 32 intrachromosomal translocations (mean 3, 0–7), 53 deletions (mean 4, 0–10) and 16 insertions (mean 1, 0–5). Three cases exhibited a pattern of complex rearrangements suggestive of a single cellular catastrophe (“chromothripsis”), two of which had mutations targeting mismatch and DNA repair (MLH3 and DCLRE1C). While no single chromosomal alteration was present in all cases, 10 of 12 ETP ALLs harbored chromosomal rearrangements, several of which involved complex multichromosomal translocations and resulted in the expression of chimeric in-frame novel fusion genes disrupting hematopoietic regulators, including ETV6-INO80D, NAP1L1-MLLT10, RUNX1-EVX1 and NUP214-SQSTM1, each occurring in a single case. An additional ETP case with the ETV6-INO80D fusion was identified in the recurrence cohort. Additionally, 51% of structural variants had breakpoints in genes, including those with roles in hematopoiesis and leukemogenesis, and genes also targeted by mutation in other cases (MLH3, SUZ12, RUNX1).

We identified a high frequency of activating mutations in genes regulating cytokine receptor and Ras signalling in ETP ALL (67.2% of ETP compared to 19% of non-ETP T-ALL) including NRAS (17%), FLT3 (14%), JAK3 (9%), SH2B3 (or LNK; 9%), IL7R (8%), JAK1 (8%), KRAS (3%), and BRAF (2%). Seven cases (5 ETP, 2 non-ETP) harbored in frame insertion mutations in the transmembrane domain of IL7R, which were transforming when expressed in the murine cell lines, and resulted in enhanced colony formation when expressed in primary murine hematopoietic cells. The IL7R mutations resulted in constitutive Jak-Stat activation in these cell lines and primary leukemic cells expressing these mutations.

Fifty-eight percent of ETP cases (compared to 17% of non-ETP cases) harbored mutations known or predicted to disrupt hematopoietic and lymphoid development, including ETV6 (33%), RUNX1 (16%), IKZF1 (14%), GATA3 (10%), EP300 (5%) and GATA2 (2%). GATA3 regulates early T cell development, and mutations in this gene were observed exclusively in ETP ALL. The mutations were commonly biallelic, and were clustered at R276, a residue critical for binding of GATA3 to DNA. Strikingly, mutations disrupting chromatin modifying genes were also highly enriched in ETP ALL. Genes encoding the the polycomb repressor complex 2 (EZH2, SUZ12 and EED), that mediates histone 3 lysine 27 (H3K27) trimethylation were deleted or mutated in 42% of ETP ALL compared to 12% of non-ETP T-ALL. In addition, alterations of the H3K36 trimethylase SETD2 were observed in 5 ETP cases, but not in non-ETP ALL. We also identified recurrent mutations in genes that have not previously been implicated in hematopoietic malignancies including RELN, DNM2, ECT2L, HNRNPA1 and HNRNPR.

Using gene set enrichment analysis we demonstrate that the gene expression profile of ETP ALL shares features not only with normal human hematopoietic stem cells, but also with leukemic initiating cells (LIC) purified from patients with acute myeloid leukemia (AML). These results indicate that mutations that drive proliferation, impair differentiation and disrupt histone modification cooperate to induce an aggressive leukemia with an aberrant immature phenotype. The similarity of the gene expression pattern with that observed in the LIC of AML raises the possibility that myeloid-directed therapies might improve the outcome of ETP ALL.

Disclosures:

Evans:St. Jude Children's research Hospital: Employment, Patents & Royalties; NIH & NCI: Research Funding; Aldagen: Membership on an entity's Board of Directors or advisory committees.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution