• We leveraged large-scale genetic dependency screens and drug screens to characterize the therapeutic vulnerabilities of MM with 1q+.

  • We showed that 1q+ confers increased sensitivity to the combination of MCL1 and PI3K inhibitors and uncovered a cytostatic effect.

Abstract

The development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for patients with MM with 1q+ stands to benefit a large portion of patients in need of more effective management. Here, we used large-scale dependency screens and drug screens to systematically characterize the therapeutic vulnerabilities of MM with 1q+ and displayed increased sensitivity to myeloid cell leukemia-1 (MCL1) and phosphatidyl inositol 3-kinase (PI3K) inhibitors. Using single-cell RNA sequencing, we compared subclones with and without 1q+ within the same patient tumors and demonstrated that 1q+ is associated with higher levels of MCL1 and the PI3K pathway. Furthermore, by isolating isogenic clones with different copy number profiles for part of the chromosome 1q arm, we observed increased sensitivity to MCL1 and PI3K inhibitors with arm-level gain. Lastly, we demonstrated synergy between MCL1 and PI3K inhibitors and dissected their mechanism of action in MM with 1q+, uncovering a cytostatic effect. In conclusion, this study highlights that MM with 1q+ may present enhanced sensitivity to MCL1 and PI3K inhibitors, enabling their use at lower doses without sacrificing efficacy, and may thus accelerate the development of targeted therapy for patients with MM and 1q+.

1.
Ansari-Pour
N
,
Samur
M
,
Flynt
E
, et al
.
Whole-genome analysis identifies novel drivers and high-risk double-hit events in relapsed/refractory myeloma
.
Blood
.
2023
;
141
(
6
):
620
-
633
.
2.
Barwick
BG
,
Neri
P
,
Bahlis
NJ
, et al
.
Multiple myeloma immunoglobulin lambda translocations portend poor prognosis
.
Nat Commun
.
2019
;
10
(
1
):
1911
.
3.
Bolli
N
,
Avet-Loiseau
H
,
Wedge
DC
, et al
.
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
.
Nat Commun
.
2014
;
5
:
2997
.
4.
Bustoros
M
,
Sklavenitis-Pistofidis
R
,
Park
J
, et al
.
Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression
.
J Clin Oncol
.
2020
;
38
(
21
):
2380
-
2389
.
5.
Chapman
MA
,
Lawrence
MS
,
Keats
JJ
, et al
.
Initial genome sequencing and analysis of multiple myeloma
.
Nature
.
2011
;
471
(
7339
):
467
-
472
.
6.
Giesen
N
,
Paramasivam
N
,
Toprak
UH
, et al
.
Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities
.
Haematologica
.
2022
;
107
(
8
):
1891
-
1901
.
7.
Lohr
JG
,
Stojanov
P
,
Carter
SL
, et al
.
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
.
Cancer Cell
.
2014
;
25
(
1
):
91
-
101
.
8.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
;
10
(
1
):
3835
.
9.
Oben
B
,
Froyen
G
,
Maclachlan
KH
, et al
.
Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities
.
Nat Commun
.
2021
;
12
(
1
):
1861
.
10.
Walker
BA
,
Boyle
EM
,
Wardell
CP
, et al
.
Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma
.
J Clin Oncol
.
2015
;
33
(
33
):
3911
-
3920
.
11.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis
.
Leukemia
.
2019
;
33
(
1
):
159
-
170
.
12.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma
.
Blood
.
2018
;
132
(
6
):
587
-
597
.
13.
Avet-Loiseau
H
,
Attal
M
,
Moreau
P
, et al
.
Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome
.
Blood
.
2007
;
109
(
8
):
3489
-
3495
.
14.
Fonseca
R
.
Many and multiple myeloma(s)
.
Leukemia
.
2003
;
17
(
10
):
1943
-
1944
.
15.
Fonseca
R
,
Blood
E
,
Rue
M
, et al
.
Clinical and biologic implications of recurrent genomic aberrations in myeloma
.
Blood
.
2003
;
101
(
11
):
4569
-
4575
.
16.
Fonseca
R
,
Blood
EA
,
Oken
MM
, et al
.
Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients
.
Blood
.
2002
;
99
(
10
):
3735
-
3741
.
17.
Fonseca
R
,
Debes-Marun
CS
,
Picken
EB
, et al
.
The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma
.
Blood
.
2003
;
102
(
7
):
2562
-
2567
.
18.
Bergsagel
PL
,
Kuehl
WM
,
Zhan
F
,
Sawyer
J
,
Barlogie
B
,
Shaughnessy
J
.
Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma
.
Blood
.
2005
;
106
(
1
):
296
-
303
.
19.
Bal
S
,
Kumar
SK
,
Fonseca
R
, et al
.
Multiple myeloma with t(11;14): unique biology and evolving landscape
.
Am J Cancer Res
.
2022
;
12
(
7
):
2950
-
2965
.
20.
Kaufman
JL
,
Gasparetto
C
,
Schjesvold
FH
, et al
.
Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma
.
Am J Hematol
.
2021
;
96
(
4
):
418
-
427
.
21.
Kumar
SK
,
Harrison
SJ
,
Cavo
M
, et al
.
Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial
.
Lancet Oncol
.
2020
;
21
(
12
):
1630
-
1642
.
22.
Bosco
N
,
Goldberg
A
,
Zhao
X
, et al
.
KaryoCreate: a CRISPR-based technology to study chromosome-specific aneuploidy by targeting human centromeres
.
Cell
.
2023
;
186
(
9
):
1985
-
2001
.
23.
Choi
PS
,
Meyerson
M
.
Targeted genomic rearrangements using CRISPR/Cas technology
.
Nat Commun
.
2014
;
5
:
3728
.
24.
Eleveld
TF
,
Bakali
C
,
Eijk
PP
, et al
.
Engineering large-scale chromosomal deletions by CRISPR-Cas9
.
Nucleic Acids Res
.
2021
;
49
(
21
):
12007
-
12016
.
25.
Zuo
E
,
Huo
X
,
Yao
X
, et al
.
CRISPR/Cas9-mediated targeted chromosome elimination
.
Genome Biol
.
2017
;
18
(
1
):
224
.
26.
Abdallah
N
,
Greipp
P
,
Kapoor
P
, et al
.
Clinical characteristics and treatment outcomes of newly diagnosed multiple myeloma with chromosome 1q abnormalities
.
Blood Adv
.
2020
;
4
(
15
):
3509
-
3519
.
27.
Avet-Loiseau
H
,
Attal
M
,
Campion
L
, et al
.
Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival
.
J Clin Oncol
.
2012
;
30
(
16
):
1949
-
1952
.
28.
Croft
J
,
Ellis
S
,
Sherborne
AL
, et al
.
Copy number evolution and its relationship with patient outcome-an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial
.
Leukemia
.
2021
;
35
(
7
):
2043
-
2053
.
29.
Giri
S
,
Huntington
SF
,
Wang
R
, et al
.
Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents
.
Blood Adv
.
2020
;
4
(
10
):
2245
-
2253
.
30.
Gutiérrez
NC
,
García
JL
,
Hernández
JM
, et al
.
Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma
.
Blood
.
2004
;
104
(
9
):
2661
-
2666
.
31.
Hanamura
I
.
Gain/amplification of chromosome arm 1q21 in multiple myeloma
.
Cancers (Basel)
.
2021
;
13
(
2
):
256
.
32.
Hanamura
I
,
Stewart
JP
,
Huang
Y
, et al
.
Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation
.
Blood
.
2006
;
108
(
5
):
1724
-
1732
.
33.
Locher
M
,
Steurer
M
,
Jukic
E
, et al
.
The prognostic value of additional copies of 1q21 in multiple myeloma depends on the primary genetic event
.
Am J Hematol
.
2020
;
95
(
12
):
1562
-
1571
.
34.
Mohan
M
,
Weinhold
N
,
Schinke
C
, et al
.
Daratumumab in high-risk relapsed/refractory multiple myeloma patients: adverse effect of chromosome 1q21 gain/amplification and GEP70 status on outcome
.
Br J Haematol
.
2020
;
189
(
1
):
67
-
71
.
35.
Schmidt
TM
,
Barwick
BG
,
Joseph
N
, et al
.
Gain of chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone
.
Blood Cancer J
.
2019
;
9
(
12
):
94
.
36.
Schmidt
TM
,
Fonseca
R
,
Usmani
SZ
.
Chromosome 1q21 abnormalities in multiple myeloma
.
Blood Cancer J
.
2021
;
11
(
4
):
83
.
37.
Shah
GL
,
Landau
H
,
Londono
D
, et al
.
Gain of chromosome 1q portends worse prognosis in multiple myeloma despite novel agent-based induction regimens and autologous transplantation
.
Leuk Lymphoma
.
2017
;
58
(
8
):
1823
-
1831
.
38.
Shah
V
,
Sherborne
AL
,
Walker
BA
, et al
.
Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients
.
Leukemia
.
2018
;
32
(
1
):
102
-
110
.
39.
Sklavenitis-Pistofidis
R
,
Getz
G
,
Ghobrial
I
,
Papaioannou
M
.
Multiple myeloma with amplification of Chr1q: therapeutic opportunity and challenges
.
Front Oncol
.
2022
;
12
:
961421
.
40.
Weinhold
N
,
Salwender
HJ
,
Cairns
DA
, et al
.
Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma - a meta-analysis of 2,596 trial patients
.
Haematologica
.
2021
;
106
(
10
):
2754
-
2758
.
41.
Mateos
MV
,
Kumar
S
,
Dimopoulos
MA
, et al
.
International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)
.
Blood Cancer J
.
2020
;
10
(
10
):
102
.
42.
Merz
M
,
Hielscher
T
,
Schult
D
, et al
.
Cytogenetic subclone formation and evolution in progressive smoldering multiple myeloma
.
Leukemia
.
2020
;
34
(
4
):
1192
-
1196
.
43.
Neben
K
,
Jauch
A
,
Hielscher
T
, et al
.
Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load
.
J Clin Oncol
.
2013
;
31
(
34
):
4325
-
4332
.
44.
Rajkumar
SV
.
Multiple myeloma: 2022 update on diagnosis, risk stratification, and management
.
Am J Hematol
.
2022
;
97
(
8
):
1086
-
1107
.
45.
An
G
,
Li
Z
,
Tai
YT
, et al
.
The impact of clone size on the prognostic value of chromosome aberrations by fluorescence in situ hybridization in multiple myeloma
.
Clin Cancer Res
.
2015
;
21
(
9
):
2148
-
2156
.
46.
Boyle
EM
,
Blaney
P
,
Stoeckle
JH
, et al
.
Multiomic mapping of acquired chromosome 1 copy-number and structural variants to identify therapeutic vulnerabilities in multiple myeloma
.
Clin Cancer Res
.
2023
;
29
(
19
):
3901
-
3913
.
47.
Carrasco
DR
,
Tonon
G
,
Huang
Y
, et al
.
High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients
.
Cancer Cell
.
2006
;
9
(
4
):
313
-
325
.
48.
Gupta
VA
,
Matulis
SM
,
Conage-Pough
JE
, et al
.
Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma
.
Blood
.
2017
;
129
(
14
):
1969
-
1979
.
49.
Huang
J
,
Zhou
Y
,
Thomas
GS
, et al
.
NEDD8 inhibition overcomes CKS1B-induced drug resistance by upregulation of p21 in multiple myeloma
.
Clin Cancer Res
.
2015
;
21
(
24
):
5532
-
5542
.
50.
Marchesini
M
,
Ogoti
Y
,
Fiorini
E
, et al
.
ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple myeloma
.
Cancer Cell
.
2017
;
32
(
1
):
88
-
100
.
51.
Peperzak
V
,
Vikström
I
,
Walker
J
, et al
.
Mcl-1 is essential for the survival of plasma cells
.
Nat Immunol
.
2013
;
14
(
3
):
290
-
297
.
52.
Shi
L
,
Wang
S
,
Zangari
M
, et al
.
Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance
.
Oncotarget
.
2010
;
1
(
1
):
22
-
33
.
53.
Slomp
A
,
Moesbergen
LM
,
Gong
JN
, et al
.
Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting
.
Blood Adv
.
2019
;
3
(
24
):
4202
-
4214
.
54.
Takada
K
,
Zhu
D
,
Bird
GH
, et al
.
Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling
.
Sci Transl Med
.
2012
;
4
(
148
):
148ra117
.
55.
Trasanidis
N
,
Katsarou
A
,
Ponnusamy
K
, et al
.
Systems medicine dissection of chr1q-amp reveals a novel PBX1-FOXM1 axis for targeted therapy in multiple myeloma
.
Blood
.
2022
;
139
(
13
):
1939
-
1953
.
56.
Tron
AE
,
Belmonte
MA
,
Adam
A
, et al
.
Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia
.
Nat Commun
.
2018
;
9
(
1
):
5341
.
57.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
):
564
-
576.e16e16
.
58.
Dempster
JM
,
Boyle
I
,
Vazquez
F
, et al
.
Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects
.
Genome Biol
.
2021
;
22
(
1
):
343
.
59.
McFarland
JM
,
Ho
ZV
,
Kugener
G
, et al
.
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration
.
Nat Commun
.
2018
;
9
(
1
):
4610
.
60.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst
.
2015
;
1
(
6
):
417
-
425
.
61.
Meyers
RM
,
Bryan
JG
,
McFarland
JM
, et al
.
Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
.
Nat Genet
.
2017
;
49
(
12
):
1779
-
1784
.
62.
Buehler
E
,
Chen
YC
,
Martin
S
.
C911: a bench-level control for sequence specific siRNA off-target effects
.
PLoS One
.
2012
;
7
(
12
):
e51942
.
63.
Hanamura
I
,
Huang
Y
,
Zhan
F
,
Barlogie
B
,
Shaughnessy
J
.
Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations
.
Leukemia
.
2006
;
20
(
7
):
1288
-
1290
.
64.
Weinstein
JN
,
Collisson
EA
,
Mills
GB
, et al
.
Cancer Genome Atlas Research Network. The cancer genome atlas pan-cancer analysis project
.
Nat Genet
.
2013
;
45
(
10
):
1113
-
1120
.
65.
Subramanian
A
,
Narayan
R
,
Corsello
SM
, et al
.
A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
.
Cell
.
2017
;
171
(
6
):
1437
-
1452.e17
.
66.
Corsello
SM
,
Bittker
JA
,
Liu
Z
, et al
.
The Drug Repurposing Hub: a next-generation drug library and information resource
.
Nat Med
.
2017
;
23
(
4
):
405
-
408
.
67.
Di Veroli
GY
,
Fornari
C
,
Wang
D
, et al
.
Combenefit: an interactive platform for the analysis and visualization of drug combinations
.
Bioinformatics
.
2016
;
32
(
18
):
2866
-
2868
.
68.
Gao
T
,
Soldatov
R
,
Sarkar
H
, et al
.
Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes
.
Nat Biotechnol
.
2023
;
41
(
3
):
417
-
426
.
69.
Nadeem
O
,
Aranha
MP
,
Redd
R
, et al
.
Deeper response predicts better outcomes in high-risk-smoldering-myeloma: results of the I-PRISM phase II clinical trial
.
Nat Commun
.
2025
;
16
:
358
.
70.
Sklavenitis-Pistofidis
R
,
Konishi
Y
,
Heilpern-Mallory
D
, et al
.
Single-cell RNA sequencing defines distinct disease subtypes and reveals hypo-responsiveness to interferon in asymptomatic Waldenstrom's Macroglobulinemia
.
Nat Commun
.
2025
;
16
:
1480
.
71.
Nadeem
O
,
Aranha
MP
,
Redd
R
, et al
.
Long-term follow-up defines the population that benefits from early interception in a high-risk smoldering multiple myeloma clinical trial using the combination of ixazomib, lenalidomide, and dexamethasone
.
medRxiv
.
Preprint posted online 19 April 2024
.
72.
Zheng
GX
,
Terry
JM
,
Belgrader
P
, et al
.
Massively parallel digital transcriptional profiling of single cells
.
Nat Commun
.
2017
;
8
:
14049
.
73.
McKenna
A
,
Hanna
M
,
Banks
E
, et al
.
The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
.
Genome Res
.
2010
;
20
(
9
):
1297
-
1303
.
74.
Itkonen
HM
,
Engedal
N
,
Babaie
E
, et al
.
UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation
.
Oncogene
.
2015
;
34
(
28
):
3744
-
3750
.
75.
Valcárcel
LV
,
San José-Enériz
E
,
Ordoñez
R
, et al
.
An automated network-based tool to search for metabolic vulnerabilities in cancer
.
Nat Commun
.
2024
;
15
(
1
):
8685
.
76.
Wei
AH
,
Roberts
AW
,
Spencer
A
, et al
.
Targeting MCL-1 in hematologic malignancies: rationale and progress
.
Blood Rev
.
2020
;
44
:
100672
.
77.
Ramberger
E
,
Sapozhnikova
V
,
Ng
YLD
, et al
.
The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities
.
Nat Cancer
.
2024
;
5
(
8
):
1267
-
1284
.
78.
Semenas
J
,
Hedblom
A
,
Miftakhova
RR
, et al
.
The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
35
):
E3689
-
E3698
.
79.
Arai
S
,
Jonas
O
,
Whitman
MA
,
Corey
E
,
Balk
SP
,
Chen
S
.
Tyrosine kinase inhibitors increase MCL1 degradation and in combination with BCLXL/BCL2 inhibitors drive prostate cancer apoptosis
.
Clin Cancer Res
.
2018
;
24
(
21
):
5458
-
5470
.
80.
Chen
G
,
Park
D
,
Magis
AT
, et al
.
Mcl-1 interacts with Akt to promote lung cancer progression
.
Cancer Res
.
2019
;
79
(
24
):
6126
-
6138
.
81.
Choudhary
GS
,
Al-Harbi
S
,
Mazumder
S
, et al
.
MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies
.
Cell Death Dis
.
2015
;
6
(
1
):
e1593
.
82.
Coloff
JL
,
Macintyre
AN
,
Nichols
AG
, et al
.
Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition
.
Cancer Res
.
2011
;
71
(
15
):
5204
-
5213
.
83.
Dunn
S
,
Eberlein
C
,
Yu
J
, et al
.
AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors
.
Oncogene
.
2022
;
41
(
46
):
5046
-
5060
.
84.
Boiarsky
R
,
Haradhvala
NJ
,
Alberge
JB
, et al
.
Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis
.
Nat Commun
.
2022
;
13
(
1
):
7040
.
85.
Tian
Z
,
D'Arcy
P
,
Wang
X
, et al
.
A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance
.
Blood
.
2014
;
123
(
5
):
706
-
716
.
86.
Mahdipour-Shirayeh
A
,
Erdmann
N
,
Leung-Hagesteijn
C
,
Tiedemann
RE
.
sciCNV: high-throughput paired profiling of transcriptomes and DNA copy number variations at single-cell resolution
.
Brief Bioinform
.
2022
;
23
(
1
):
bbab413
.
87.
Fujise
K
,
Zhang
D
,
Liu
J
,
Yeh
ET
.
Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen
.
J Biol Chem
.
2000
;
275
(
50
):
39458
-
39465
.
88.
Haschka
MD
,
Soratroi
C
,
Kirschnek
S
, et al
.
The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest
.
Nat Commun
.
2015
;
6
:
6891
.
89.
Sloss
O
,
Topham
C
,
Diez
M
,
Taylor
S
.
Mcl-1 dynamics influence mitotic slippage and death in mitosis
.
Oncotarget
.
2016
;
7
(
5
):
5176
-
5192
.
90.
Wertz
IE
,
Kusam
S
,
Lam
C
, et al
.
Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7
.
Nature
.
2011
;
471
(
7336
):
110
-
114
.
91.
Whitaker
RH
,
Placzek
WJ
.
Regulating the BCL2 family to improve sensitivity to microtubule targeting agents
.
Cells
.
2019
;
8
(
4
):
346
.
92.
Widden
H
,
Placzek
WJ
.
The multiple mechanisms of MCL1 in the regulation of cell fate
.
Commun Biol
.
2021
;
4
(
1
):
1029
.
93.
Streletskaia
AY
,
Senichkin
VV
,
Prikazchikova
TA
,
Zatsepin
TS
,
Zhivotovsky
B
,
Kopeina
GS
.
Upregulation of Mcl-1S causes cell-cycle perturbations and DNA damage accumulation
.
Front Cell Dev Biol
.
2020
;
8
:
543066
.
94.
Dan
S
,
Yoshimi
H
,
Okamura
M
,
Mukai
Y
,
Yamori
T
.
Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G0/G1 arrest
.
Biochem Biophys Res Commun
.
2009
;
379
(
1
):
104
-
109
.
95.
Fekete
M
,
Santiskulvong
C
,
Eng
C
,
Dorigo
O
.
Effect of PI3K/Akt pathway inhibition-mediated G1 arrest on chemosensitization in ovarian cancer cells
.
Anticancer Res
.
2012
;
32
(
2
):
445
-
452
.
96.
Fujiwara
Y
,
Hosokawa
Y
,
Watanabe
K
,
Tanimura
S
,
Ozaki
Ki
,
Kohno
M
.
Blockade of the phosphatidylinositol-3-kinase-Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated
.
Mol Cancer Ther
.
2007
;
6
(
3
):
1133
-
1142
.
97.
Liang
J
,
Slingerland
JM
.
Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression
.
Cell Cycle
.
2003
;
2
(
4
):
339
-
345
.
98.
Onishi
K
,
Higuchi
M
,
Asakura
T
,
Masuyama
N
,
Gotoh
Y
.
The PI3K-Akt pathway promotes microtubule stabilization in migrating fibroblasts
.
Genes Cells
.
2007
;
12
(
4
):
535
-
546
.
99.
Chatterjee
M
,
Andrulis
M
,
Stühmer
T
, et al
.
The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma
.
Haematologica
.
2013
;
98
(
7
):
1132
-
1141
.
100.
Frezzato
F
,
Raggi
F
,
Martini
V
, et al
.
HSP70/HSF1 axis, regulated via a PI3K/AKT pathway, is a druggable target in chronic lymphocytic leukemia
.
Int J Cancer
.
2019
;
145
(
11
):
3089
-
3100
.
101.
Sun
J
,
Conn
CS
,
Han
Y
,
Yeung
V
,
Qian
SB
.
PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation
.
J Biol Chem
.
2011
;
286
(
8
):
6791
-
6800
.
102.
Rauh
U
,
Wei
G
,
Serrano-Wu
M
, et al
.
BRD-810 is a highly selective MCL1 inhibitor with optimized in vivo clearance and robust efficacy in solid and hematological tumor models
.
Nat Cancer
.
2024
;
5
(
10
):
1479
-
1493
.
You do not currently have access to this content.
Sign in via your Institution