• A lower circulating lymphocyte-to-monocyte ratio and proportion of B cells at apheresis predict a reduced likelihood of response to CAR-T.

  • On exploratory analysis, axicabtagene ciloleucel products enriched for CD8 T effector memory cells were associated with durable response.

Abstract

Engineered cellular therapy with CD19-targeting chimeric antigen receptor T cells (CAR-Ts) has revolutionized outcomes for patients with relapsed/refractory large B-cell lymphoma (LBCL), but the cellular and molecular features associated with response remain largely unresolved. We analyzed serial peripheral blood samples ranging from the day of apheresis (day –28/baseline) to 28 days after CAR-T infusion from 50 patients with LBCL treated with axicabtagene ciloleucel by integrating single-cell RNA and T-cell receptor sequencing, flow cytometry, and mass cytometry to characterize features associated with response to CAR-T. Pretreatment patient characteristics associated with response included the presence of B cells and increased absolute lymphocyte count to absolute monocyte count ratio (ALC/AMC). Infusion products from responders were enriched for clonally expanded, highly activated CD8+ T cells. We expanded these observations to 99 patients from the ZUMA-1 cohort and identified a subset of patients with elevated baseline B cells, 80% of whom were complete responders. We integrated B-cell proportion ≥0.5% and ALC/AMC ≥1.2 into a 2-factor predictive model and applied this model to the ZUMA-1 cohort. Estimated progression-free survival at 1 year in patients meeting 1 or both criteria was 65% vs 31% for patients meeting neither criterion. Our results suggest that patients’ immunologic state at baseline affects the likelihood of response to CAR-T through both modulation of the T-cell apheresis product composition and promoting a more favorable circulating immune compartment before therapy. These baseline immunologic features, measured readily in the clinical setting before CAR-T, can be applied to predict response to therapy.

1.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
2.
Rejeski
K
,
Subklewe
M
,
Aljurf
M
, et al
.
Immune effector cell-associated hematotoxicity (ICAHT): EHA/EBMT consensus grading and best practice recommendations
.
Blood
.
2023
;
142
(
10
):
865
-
877
.
3.
Mahdi
J
,
Dietrich
J
,
Straathof
K
, et al
.
Tumor inflammation-associated neurotoxicity
.
Nat Med
.
2023
;
29
(
4
):
803
-
810
.
4.
Sermer
D
,
Batlevi
C
,
Palomba
ML
, et al
.
Outcomes in patients with DLBCL treated with commercial CAR T cells compared with alternate therapies
.
Blood Adv
.
2020
;
4
(
19
):
4669
-
4678
.
5.
Rejeski
K
,
Jain
MD
,
Smith
EL
.
Mechanisms of resistance and treatment of relapse after CAR T-cell therapy for large B-cell lymphoma and multiple myeloma
.
Transplant Cell Ther
.
2023 Jul
;
29
(
7
):
418
-
428
.
6.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
7.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med
.
2020
;
26
(
12
):
1878
-
1887
.
8.
Li
X
,
Henderson
J
,
Gordon
MJ
, et al
.
A single-cell atlas of CD19 chimeric antigen receptor T cells
.
Cancer Cell
.
2023
;
41
(
11
):
1835
-
1837
.
9.
Cheson
BD
,
Fisher
RI
,
Barrington
SF
, et al
.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification
.
J Clin Oncol
.
2014
;
32
(
27
):
3059
-
3068
.
10.
Shapiro
RM
,
Birch
GC
,
Hu
G
, et al
.
Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse
.
J Clin Invest
.
2022
;
132
(
11
):
e154334
.
11.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B-cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
12.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
13.
Grabski
IN
,
Irizarry
RA
.
A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data
.
Biostatistics
.
2022
;
23
(
4
):
1150
-
1164
.
14.
Aran
D
,
Looney
AP
,
Liu
L
, et al
.
Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage
.
Nat Immunol
.
2019
;
20
(
2
):
163
-
172
.
15.
Büttner
M
,
Miao
Z
,
Wolf
FA
,
Teichmann
SA
,
Theis
FJ
.
A test metric for assessing single-cell RNA-seq batch correction
.
Nat Methods
.
2019
;
16
(
1
):
43
-
49
.
16.
Porrata
LF
,
Inwards
DJ
,
Ansell
SM
, et al
.
Infused autograft lymphocyte to monocyte ratio predicts survival in classical Hodgkin lymphoma
.
J Blood Med
.
2015
;
6
:
45
-
53
.
17.
Porrata
LF
,
Ristow
K
,
Habermann
TM
, et al
.
Absolute monocyte/lymphocyte count prognostic score is independent of immunohistochemically determined cell of origin in predicting survival in diffuse large B-cell lymphoma
.
Leuk Lymphoma
.
2012
;
53
(
11
):
2159
-
2165
.
18.
Porrata
LF
,
Inwards
DJ
,
Ansell
SM
, et al
.
Infused autograft lymphocyte to monocyte ratio and survival in diffuse large B cell lymphoma
.
Biol Blood Marrow Transplant
.
2014
;
20
(
11
):
1804
-
1812
.
19.
Porrata
LF
,
Ristow
KM
,
Habermann
TM
, et al
.
Peripheral blood absolute lymphocyte/monocyte ratio recovery during ABVD treatment cycles predicts clinical outcomes in classical Hodgkin lymphoma
.
Blood Cancer J
.
2013
;
3
(
4
):
e110
.
20.
Porrata
LF
,
Ristow
KM
,
Habermann
TM
, et al
.
Peripheral blood absolute lymphocyte/monocyte ratio during rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone treatment cycles predicts clinical outcomes in diffuse large B-cell lymphoma
.
Leuk Lymphoma
.
2014
;
55
(
12
):
2728
-
2738
.
21.
Wilson
TL
,
Kim
H
,
Chou
CH
, et al
.
Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages
.
Cancer Discov
.
2022
;
12
(
9
):
2098
-
2119
.
22.
Good
CR
,
Aznar
MA
,
Kuramitsu
S
, et al
.
An NK-like CAR T cell transition in CAR T cell dysfunction
.
Cell
.
2021
;
184
(
25
):
6081
-
6100.e26
.
23.
Andreatta
M
,
Corria-Osorio
J
,
Müller
S
,
Cubas
R
,
Coukos
G
,
Carmona
SJ
.
Interpretation of T cell states from single-cell transcriptomics data using reference atlases
.
Nat Commun
.
2021
;
12
(
1
):
2965
.
24.
Hess
PR
,
Boczkowski
D
,
Nair
SK
,
Snyder
D
,
Gilboa
E
.
Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen
.
Cancer Immunol Immunother
.
2006
;
55
(
6
):
672
-
683
.
25.
Tu
S
,
Zhou
L
,
Huang
R
, et al
.
Dendritic cell vaccines extend CD19 CAR-T cell persistence and improve the outcomes in refractory/relapsed adult B-ALL [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3488
.
26.
Locke
FL
,
Filosto
S
,
Chou
J
, et al
.
Impact of tumor microenvironment on efficacy of anti-CD19 CAR T cell therapy or chemotherapy and transplant in large B cell lymphoma
.
Nat Med
.
2024
;
30
(
2
):
507
-
518
.
27.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
28.
Carniti
C
,
Caldarelli
NM
,
Agnelli
L
, et al
.
Monocytes in leukapheresis products affect the outcome of CD19-targeted CAR T-cell therapy in patients with lymphoma
.
Blood Adv
.
2024
;
8
(
8
):
1968
-
1980
.
29.
Romano
A
,
Parrinello
NL
,
Vetro
C
, et al
.
Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy
.
Br J Haematol
.
2015
;
168
(
5
):
689
-
700
.
30.
Budka
J
,
Chou
J
,
Plaks
V
, et al
.
Abstract CT166: pretreatment (PreTx) immune cell phenotypes in peripheral blood associated with the tumor immune contexture, product attributes, and durable clinical efficacy in patients with large B-cell lymphoma (LBCL) treated with axicabtagene ciloleucel (axi-cel)
.
Cancer Res
.
2021
;
81
(
suppl 13
):
CT166
. CT166.
31.
Jain
MD
,
Zhao
H
,
Wang
X
, et al
.
Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma
.
Blood
.
2021
;
137
(
19
):
2621
-
2633
.
32.
Carniti
C
,
Caldarelli
NM
,
Agnelli
L
, et al
.
Monocytes in leukapheresis products affect the outcome of CD19-targeted CAR T-cell therapy in lymphoma patients
.
Blood Adv
.
2024
.
33.
Sheih
A
,
Voillet
V
,
Hanafi
LA
, et al
.
Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy
.
Nat Commun
.
2020
;
11
(
1
):
219
.
34.
Good
Z
,
Hamilton
MP
,
Spiegel
JY
, et al
.
Lineage tracing of CAR T cells in patients with B cell malignancies [abstract]
.
Cancer Res
.
2023
;
83
(
suppl 7
):
1128
.
35.
Engels
B
,
Zhu
X
,
Yang
J
, et al
.
Preservation of T-Cell stemness with a novel expansionless CAR-T manufacturing process, which reduces manufacturing time to less than two days, drives enhanced CAR-T cell efficacy [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
2848
.
36.
Scholler
N
,
Perbost
R
,
Locke
FL
, et al
.
Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1872
-
1882
.
37.
Locke
FL
,
Rossi
JM
,
Neelapu
SS
, et al
.
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
19
):
4898
-
4911
.
38.
Sommermeyer
D
,
Hudecek
M
,
Kosasih
PL
, et al
.
Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo
.
Leukemia
.
2016
;
30
(
2
):
492
-
500
.
39.
Arcangeli
S
,
Falcone
L
,
Camisa
B
, et al
.
Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients
.
Front Immunol
.
2020
;
11
:
1217
.
40.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells
.
Sci Transl Med
.
2016
;
8
(
355
):
355ra116
.
41.
Dickinson
MJ
,
Barba
P
,
Jager
U
, et al
.
A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development
.
Cancer Discov
.
2023
;
13
(
9
):
1982
-
1997
.
42.
Hay
KA
,
Gauthier
J
,
Hirayama
AV
, et al
.
Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy
.
Blood
.
2019
;
133
(
15
):
1652
-
1663
.
43.
Selli
ME
,
Landmann
JH
,
Terekhova
M
, et al
.
Costimulatory domains direct distinct fates of CAR-driven T-cell dysfunction
.
Blood
.
2023
;
141
(
26
):
3153
-
3165
.
44.
Louie
RHY
,
Cai
C
,
Samir
J
, et al
.
CAR(+) and CAR(-) T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies
.
Nat Commun
.
2023
;
14
(
1
):
7767
.
You do not currently have access to this content.
Sign in via your Institution