• CLTC::SYK fusions and CSF1R mutations are recurrent genetic alterations in JXG of soft tissue.

  • BRAF, MAP2K1, or NTRK1 alterations may be detected in CNS- or systemic JXG, enabling targeted therapy when necessary.

Abstract

Juvenile xanthogranuloma (JXG) is a histiocytic neoplasm that usually presents in the skin. Rarely, extracutaneous localizations occur; the genetic drivers of this clinical variant of JXG remain incompletely characterized. We present detailed clinicopathologic and molecular data of 16 children with extracutaneous JXG and 5 adults with xanthogranulomas confined to the central nervous system (CNS) or soft tissue. Tissue samples were obtained through the Dutch Nationwide Pathology Databank and analyzed with an innovative sequencing technique capable of detecting both small genomic variants and gene rearrangements. Targetable kinase alterations were detected in 16 of 16 children and 1 of 5 adults. Alterations included CLTC::SYK fusions in 6 children and CSF1R mutations in 7 others; all below 2 years of age with soft tissue tumors. One child had a CSF1R mutation and MRC1::PDGFRB fusion. Most were treated surgically, although spontaneous regression occurred in 1 of 6 with CLTC::SYK and 2 of 7 with CSF1R mutations, underscoring that treatment is not always necessary. Tumors with CLTC::SYK fusions generally lacked Touton giant cells but exhibited many other histologic features of JXG and concordant methylation profiles. Using multispectral immunofluorescence, phosphorylated–spleen tyrosine kinase expression was localized to CD163+ histiocytes; tumors with CLTC::SYK fusions also demonstrated mTOR activation, cyclin D1 expression, and variable phosphorylated–extracellular signal-regulated kinase expression. BRAFV600E was detected in 1 child and 1 adult with CNS-xanthogranulomas; both responded to BRAF inhibition. Finally, a TPM3::NTRK1 fusion or MAP2K1 deletion was detected in 2 children with systemic JXG who experienced spontaneous disease regression. This study advances the molecular understanding of histiocytic neoplasms and may guide diagnostics and clinical management.

1.
Emile
J-F
,
Abla
O
,
Fraitag
S
, et al
.
Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages
.
Blood
.
2016
;
127
(
22
):
2672
-
2681
.
2.
Picarsic
J
,
Pysher
T
,
Zhou
H
, et al
.
BRAF V600E mutation in Juvenile Xanthogranuloma family neoplasms of the central nervous system (CNS-JXG): a revised diagnostic algorithm to include pediatric Erdheim-Chester disease
.
Acta Neuropathol Commun
.
2019
;
7
(
1
):
168
.
3.
Eissa
SS
,
Clay
MR
,
Santiago
T
, et al
.
Dasatinib induces a dramatic response in a child with refractory juvenile xanthogranuloma with a novel MRC1-PDGFRB fusion
.
Blood Adv
.
2020
;
4
(
13
):
2991
-
2995
.
4.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
5.
Kemps
PG
,
Kester
L
,
Scheijde-Vermeulen
MA
, et al
.
Demographics and additional haematologic cancers of patients with histiocytic/dendritic cell neoplasms
.
Histopathology
.
2024
;
84
(
5
):
837
-
846
.
6.
Maeda
M
,
Morimoto
A
,
Shioda
Y
, et al
.
Long-term outcomes of children with extracutaneous juvenile xanthogranulomas in Japan
.
Pediatr Blood Cancer
.
2020
;
67
(
7
):
e28381
.
7.
Diamond
EL
,
Durham
BH
,
Haroche
J
, et al
.
Diverse and targetable kinase alterations drive histiocytic neoplasms
.
Cancer Discov
.
2016
;
6
(
2
):
154
-
165
.
8.
Durham
BH
,
Lopez Rodrigo
E
,
Picarsic
J
, et al
.
Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms
.
Nat Med
.
2019
;
25
(
12
):
1839
-
1842
.
9.
Kemps
PG
,
Picarsic
J
,
Durham
BH
, et al
.
ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition
.
Blood
.
2022
;
139
(
2
):
256
-
280
.
10.
Kemps
PG
,
Zondag
TCE
,
Arnardóttir
HB
, et al
.
Clinicogenomic associations in childhood Langerhans cell histiocytosis: an international cohort study
.
Blood Adv
.
2023
;
7
(
4
):
664
-
679
.
11.
Hélias-Rodzewicz
Z
,
Donadieu
J
,
Terrones
N
, et al
.
Molecular and clinicopathologic characterization of pediatric histiocytoses
.
Am J Hematol
.
2023
;
98
(
7
):
1058
-
1069
.
12.
Kemps
PG
,
van den Bos
C
,
van Halteren
AGS
;
International Study Group
.
Clinical associations of BRAF and MAP2K1 mutations in pediatric Langerhans cell histiocytosis: when 1 + 1 = 3
.
Am J Hematol
.
2023
;
98
(
9
):
E244
-
E246
.
13.
Casparie
M
,
Tiebosch
ATMG
,
Burger
G
, et al
.
Pathology databanking and biobanking in the Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive
.
Cell Oncol
.
2007
;
29
(
1
):
19
-
24
.
14.
Goyal
G
,
Heaney
ML
,
Collin
M
, et al
.
Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era
.
Blood
.
2020
;
135
(
22
):
1929
-
1945
.
15.
Kemps
PG
,
Hebeda
KM
,
Pals
ST
, et al
.
Spectrum of histiocytic neoplasms associated with diverse haematological malignancies bearing the same oncogenic mutation
.
J Pathol Clin Res
.
2021
;
7
(
1
):
10
-
26
.
16.
Verjans
R
,
Bruggink
AH
,
Kibbelaar
R
, et al
.
The Dutch National TissueArchive Portal enables efficient, consistent, and transparent procurement of diagnostic tissue samples for scientific use
.
Cell Tissue Bank
.
2021
;
22
(
4
):
727
-
736
.
17.
Janney
CG
,
Hurt
MA
,
Santa Cruz
DJ
.
Deep juvenile xanthogranuloma. Subcutaneous and intramuscular forms
.
Am J Surg Pathol
.
1991
;
15
(
2
):
150
-
159
.
18.
Vignault
C
,
Bourgeault
É
,
Gagné
É
,
Bujold
J
.
A rare case of solitary giant congenital juvenile xanthogranuloma: a case report
.
J Cutan Med Surg
.
2017
;
21
(
3
):
267
-
269
.
19.
Ferrara
D
,
Tomà
P
,
Diplomatico
M
,
Errico
ME
,
Zeccolini
M
,
Esposito
F
.
Congenital giant juvenile xanthogranuloma in a 3-month-old boy
.
J Pediatr
.
2021
;
231
:
287
-
288
.
20.
Carletti
M
,
Nguyen
DA
,
Susa
JS
,
Weis
SE
.
Congenital giant juvenile xanthogranuloma, let it be
.
HCA Healthc J Med
.
2022
;
3
(
6
):
329
-
333
.
21.
Ravindran
A
,
Dasari
S
,
Ruan
GJ
, et al
.
Malignant histiocytosis comprises a phenotypic spectrum that parallels the lineage differentiation of monocytes, macrophages, dendritic cells, and Langerhans cells
.
Mod Pathol
.
2023
;
36
(
10
):
100268
.
22.
Allahyar
A
,
Pieterse
M
,
Swennenhuis
J
, et al
.
Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing
.
Nat Commun
.
2021
;
12
(
1
):
3361
.
23.
Stelloo
E
,
Meijers
RWJ
,
Swennenhuis
JF
, et al
.
Formalin-fixed, paraffin-embedded–targeted locus capture: a next-generation sequencing technology for accurate DNA-based gene fusion detection in bone and soft tissue tumors
.
J Mol Diagn
.
2023
;
25
(
10
):
758
-
770
.
24.
Vorderman
R
,
Cats
D
,
van ’t Hof
P
, et al
.
biowdl/germline-DNA: Release 5.0.0
.
Zenodo
.
Published online May 4, 2023
.
25.
Benjamin
D
,
Sato
T
,
Cibulskis
K
, et al
.
Calling somatic SNVs and indels with Mutect2
.
bioRxiv
.
Preprint posted online 2 December 2019
.
26.
Cohen
D
,
Hondelink
LM
,
Solleveld-Westerink
N
, et al
.
Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing
.
J Thorac Oncol
.
2020
;
15
(
6
):
1000
-
1014
.
27.
van Eijk
R
,
Stevens
L
,
Morreau
H
,
van Wezel
T
.
Assessment of a fully automated high-throughput DNA extraction method from formalin-fixed, paraffin-embedded tissue for KRAS, and BRAF somatic mutation analysis
.
Exp Mol Pathol
.
2013
;
94
(
1
):
121
-
125
.
28.
Untergasser
A
,
Cutcutache
I
,
Koressaar
T
, et al
.
Primer3--new capabilities and interfaces
.
Nucleic Acids Res
.
2012
;
40
(
15
):
e115
.
29.
Osoegawa
K
,
Mammoser
AG
,
Wu
C
, et al
.
A bacterial artificial chromosome library for sequencing the complete human genome
.
Genome Res
.
2001
;
11
(
3
):
483
-
496
.
30.
Rossi
S
,
Szuhai
K
,
Ijszenga
M
, et al
.
EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma
.
Clin Cancer Res
.
2007
;
13
(
24
):
7322
-
7328
.
31.
Cleven
AHG
,
Szuhai
K
,
van IJzendoorn
DGP
, et al
.
Psammomatoid ossifying fibroma is defined by SATB2 rearrangement
.
Mod Pathol
.
2023
;
36
(
1
):
100013
.
32.
Hehir-Kwa
JY
,
Koudijs
MJ
,
Verwiel
ETP
, et al
.
Improved gene fusion detection in childhood cancer diagnostics using RNA sequencing
.
JCO Precis Oncol
.
2022
;
6
:
e2000504
.
33.
Haas
BJ
,
Dobin
A
,
Stransky
N
, et al
.
STAR-fusion: fast and accurate fusion transcript detection from RNA-seq
.
bioRxiv
.
Preprint posted online 24 March 2017
.
34.
Capper
D
,
Stichel
D
,
Sahm
F
, et al
.
Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience
.
Acta Neuropathol
.
2018
;
136
(
2
):
181
-
210
.
35.
Hornick
JL
.
Cutaneous soft tissue tumors: how do we make sense of fibrous and "fibrohistiocytic" tumors with confusing names and similar appearances?
.
Mod Pathol
.
2020
;
33
(
suppl 1
):
56
-
65
.
36.
Pegoraro
F
,
Mazzariol
M
,
Trambusti
I
, et al
.
Childhood-onset Erdheim-Chester disease in the molecular era: clinical phenotypes and long-term outcomes of 21 patients
.
Blood
.
2023
;
142
(
13
):
1167
-
1171
.
37.
te Winkel
ML
,
Lequin
MH
,
de Bruyn
JR
, et al
.
Self-limiting sternal tumors of childhood (SELSTOC)
.
Pediatr Blood Cancer
.
2010
;
55
(
1
):
81
-
84
.
38.
Crowley
HM
,
Georgantzoglou
N
,
Tse
JY
, et al
.
Expanding our knowledge of molecular pathogenesis in histiocytoses: solitary soft tissue histiocytomas in children with a novel CLTC::SYK fusion
.
Am J Surg Pathol
.
2023
;
47
(
10
):
1108
-
1115
.
39.
Glembocki
A
,
Ngan
B
,
Whitlock
J
, et al
.
A pediatric non-Langerhans cell histiocytic lesion with a CLTC::SYK gene fusion - a case report
.
Pediatr. Blood Cancer
.
2023
;
70
(
suppl 7
):
e30714
.
40.
Yang
L
,
Miao
L
,
Liang
F
, et al
.
The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration
.
Nat Commun
.
2014
;
5
(
1
):
5416
.
41.
Arenas
DJ
,
Floess
K
,
Kobrin
D
, et al
.
Increased mTOR activation in idiopathic multicentric Castleman disease
.
Blood
.
2020
;
135
(
19
):
1673
-
1684
.
42.
Kemps
PG
,
Woei-A-Jin
FJSH
,
Schöffski
P
, et al
.
Real-world experience with targeted therapy in patients with histiocytic neoplasms in the Netherlands and in Belgium
.
Blood Neoplasia
.
2024
;
1
(
3
):
100023
.
43.
Dai
X-M
,
Ryan
GR
,
Hapel
AJ
, et al
.
Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
.
Blood
.
2002
;
99
(
1
):
111
-
120
.
44.
Stanley
ER
,
Chitu
V
.
CSF-1 receptor signaling in myeloid cells
.
Cold Spring Harb Perspect Biol
.
2014
;
6
(
6
):
a021857
.
45.
Rojo
R
,
Raper
A
,
Ozdemir
DD
, et al
.
Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations
.
Nat Commun
.
2019
;
10
(
1
):
3215
.
46.
Lonardi
S
,
Scutera
S
,
Licini
S
, et al
.
CSF1R is required for differentiation and migration of Langerhans cells and Langerhans cell histiocytosis
.
Cancer Immunol Res
.
2020
;
8
(
6
):
829
-
841
.
47.
Massoth
LR
,
Hung
YP
,
Ferry
JA
, et al
.
Histiocytic and dendritic cell sarcomas of hematopoietic origin share targetable genomic alterations distinct from follicular dendritic cell sarcoma
.
Oncologist
.
2021
;
26
(
7
):
e1263
-
e1272
.
48.
Chen
J
,
Zhao
A-L
,
Duan
M-H
, et al
.
Diverse kinase alterations and myeloid-associated mutations in adult histiocytosis
.
Leukemia
.
2022
;
36
(
2
):
573
-
576
.
49.
Abeykoon
JP
,
Lasho
TL
,
Dasari
S
, et al
.
Sustained, complete response to pexidartinib in a patient with CSF1R-mutated Erdheim-Chester disease
.
Am J Hematol
.
2022
;
97
(
3
):
293
-
302
.
50.
Wilhelmsen
K
,
Burkhalter
S
,
van der Geer
P
.
C-Cbl binds the CSF-1 receptor at tyrosine 973, a novel phosphorylation site in the receptor’s carboxy-terminus
.
Oncogene
.
2002
;
21
(
7
):
1079
-
1089
.
51.
Lee
PS
,
Wang
Y
,
Dominguez
MG
, et al
.
The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation
.
EMBO J
.
1999
;
18
(
13
):
3616
-
3628
.
52.
Mócsai
A
,
Ruland
J
,
Tybulewicz
VLJ
.
The SYK tyrosine kinase: a crucial player in diverse biological functions
.
Nat Rev Immunol
.
2010
;
10
(
6
):
387
-
402
.
53.
Grädler
U
,
Schwarz
D
,
Dresing
V
, et al
.
Structural and biophysical characterization of the Syk activation switch
.
J Mol Biol
.
2013
;
425
(
2
):
309
-
333
.
54.
Streubel
B
,
Vinatzer
U
,
Willheim
M
,
Raderer
M
,
Chott
A
.
Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma
.
Leukemia
.
2006
;
20
(
2
):
313
-
318
.
55.
Dobay
MP
,
Lemonnier
F
,
Missiaglia
E
, et al
.
Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin
.
Haematologica
.
2017
;
102
(
4
):
e148
-
e151
.
56.
Zhou
M
,
Gao
L
,
Jing
Y
, et al
.
Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia
.
Ann Hematol
.
2012
;
91
(
8
):
1235
-
1243
.
57.
Kuno
Y
,
Abe
A
,
Emi
N
, et al
.
Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12)
.
Blood
.
2001
;
97
(
4
):
1050
-
1055
.
58.
Lierman
E
,
Smits
S
,
Debackere
K
,
André
M
,
Michaux
L
,
Vandenberghe
P
.
t(9;12)(q22;p13) ETV6::SYK : a new recurrent cytogenetic aberration and tyrosine kinase gene fusion in myeloid or lymphoid neoplasms associated with eosinophilia
.
Br J Haematol
.
2023
;
200
(
5
):
665
-
668
.
59.
Manuelyan
K
,
Momcheva
I
,
Angelova
S
,
Nikolov
K
,
Shivarov
V
.
Recurrent ETV6::SYK rearrangement in myeloid malignancies confers partial susceptibility to MEK inhibition
.
Br J Haematol
.
2024
;
205
(
1
):
382
-
386
.
60.
Risch
Z
,
Kaffenberger
BH
,
Chung
CG
, et al
.
Myeloid neoplasm with histiocytosis and spleen tyrosine kinase fusion responds to fostamatinib
.
Haematologica
.
2024
;
109
(
11
):
3816
-
3820
.
61.
Kanie
T
,
Abe
A
,
Matsuda
T
, et al
.
TEL-Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways
.
Leukemia
.
2004
;
18
(
3
):
548
-
555
.
62.
Pechloff
K
,
Holch
J
,
Ferch
U
, et al
.
The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma
.
J Exp Med
.
2010
;
207
(
5
):
1031
-
1044
.
63.
Park
S
,
Chapuis
N
,
Tamburini
J
, et al
.
Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia
.
Haematologica
.
2010
;
95
(
5
):
819
-
828
.
64.
Castel
P
,
Ellis
H
,
Bago
R
, et al
.
PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition
.
Cancer Cell
.
2016
;
30
(
2
):
229
-
242
.
65.
Pegoraro
F
,
Maniscalco
V
,
Peyronel
F
, et al
.
Long-term follow-up of mTOR inhibition for Erdheim-Chester disease
.
Blood
.
2020
;
135
(
22
):
1994
-
1997
.
66.
Toker
M
,
Hassonjee
FE
,
Amodio
J
, et al
.
Oral sirolimus for the treatment of juvenile xanthogranuloma: Report of two pediatric cases
.
Pediatr Dermatol
.
2024
;
41
(
5
):
849
-
852
.
67.
Shanmugam
V
,
Craig
JW
,
Hornick
JL
,
Morgan
EA
,
Pinkus
GS
,
Pozdnyakova
O
.
Cyclin D1 is expressed in neoplastic cells of Langerhans cell histiocytosis but not reactive Langerhans cell proliferations
.
Am J Surg Pathol
.
2017
;
41
(
10
):
1390
-
1396
.
68.
Chatterjee
D
,
Vishwajeet
V
,
Saikia
UN
,
Radotra
B
,
De
D
,
Bansal
D
.
CyclinD1 is useful to differentiate Langerhans cell histiocytosis from reactive Langerhans cells
.
Am J Dermatopathol
.
2019
;
41
(
3
):
188
-
192
.
69.
Baraban
E
,
Sadigh
S
,
Rosenbaum
J
, et al
.
Cyclin D1 expression and novel mutational findings in Rosai-Dorfman disease
.
Br J Haematol
.
2019
;
186
(
6
):
837
-
844
.
70.
Ravindran
A
,
Goyal
G
,
Go
RS
,
Rech
KL
;
Mayo Clinic Histiocytosis Working Group
.
Rosai-Dorfman disease displays a unique monocyte-macrophage phenotype characterized by expression of OCT2
.
Am J Surg Pathol
.
2021
;
45
(
1
):
35
-
44
.
71.
Garces
S
,
Medeiros
LJ
,
Marques-Piubelli
ML
, et al
.
Cyclin D1 expression in Rosai-Dorfman disease: a near-constant finding that is not invariably associated with mitogen-activated protein kinase/extracellular signal-regulated kinase pathway activation
.
Hum Pathol
.
2022
;
121
:
36
-
45
.
72.
Diamond
EL
,
Durham
BH
,
Ulaner
GA
, et al
.
Efficacy of MEK inhibition in patients with histiocytic neoplasms
.
Nature
.
2019
;
567
(
7749
):
521
-
524
.
73.
Aaroe
A
,
Kurzrock
R
,
Goyal
G
, et al
.
Successful treatment of non-Langerhans cell histiocytosis with the MEK inhibitor trametinib: a multicenter analysis
.
Blood Adv
.
2023
;
7
(
15
):
3984
-
3992
.
74.
Cournoyer
E
,
Ferrell
J
,
Sharp
S
, et al
.
Dabrafenib and trametinib in Langerhans cell histiocytosis and other histiocytic disorders
.
Haematologica
.
2024
;
109
(
4
):
1137
-
1148
.
75.
Liu
D
,
Mamorska-Dyga
A
.
Syk inhibitors in clinical development for hematological malignancies
.
J Hematol Oncol
.
2017
;
10
(
1
):
145
.
76.
Venturutti
L
,
Teater
M
,
Zhai
A
, et al
.
TBL1XR1 mutations drive extranodal lymphoma by inducing a pro-tumorigenic memory fate
.
Cell
.
2020
;
182
(
2
):
297
-
316.e27
.
77.
Scott
DW
,
Mungall
KL
,
Ben-Neriah
S
, et al
.
TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma
.
Blood
.
2012
;
119
(
21
):
4949
-
4952
.
78.
Murakami
N
,
Okuno
Y
,
Yoshida
K
, et al
.
Integrated molecular profiling of juvenile myelomonocytic leukemia
.
Blood
.
2018
;
131
(
14
):
1576
-
1586
.
79.
Wu
G
,
Yoshida
N
,
Liu
J
, et al
.
TP63 fusions drive multicomplex enhancer rewiring, lymphomagenesis, and EZH2 dependence
.
Sci Transl Med
.
2023
;
15
(
714
):
eadi7244
.
80.
Kumar
J
,
Petrova-Drus
K
.
Acute leukemia with predominantly myeloid differentiation and TBL1XR1 :: CSF1R fusion
.
Blood
.
2023
;
142
(
14
):
1253
.
81.
Higgs
MR
,
Reynolds
JJ
,
Winczura
A
, et al
.
BOD1L is required to suppress deleterious resection of stressed replication forks
.
Mol Cell
.
2015
;
59
(
3
):
462
-
477
.
82.
Cao
Y
,
Qiu
T
,
Kathayat
RS
, et al
.
ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5
.
Nat Chem Biol
.
2019
;
15
(
12
):
1232
-
1240
.
83.
Chakraborty
R
,
Hampton
OA
,
Shen
X
, et al
.
Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis
.
Blood
.
2014
;
124
(
19
):
3007
-
3015
.
84.
Brown
N
,
Furtado
L
,
Betz
B
,
Kiel
M
,
Weigelin
HC
,
Lim
MS
,
Elenitoba-Johnson
KSJ
.
High prevalence of somatic MAP2K1 mutations in BRAF V600E negative Langerhans cell histiocytosis
.
Blood
.
2014
;
124
(
10
):
1655
-
1658
.
85.
Nelson
DS
,
van Halteren
A
,
Quispel
WT
, et al
.
MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis
.
Genes Chromosomes Cancer
.
2015
;
54
(
6
):
361
-
368
.
86.
Zanwar
S
,
Abeykoon
JP
,
Dasari
S
, et al
.
Clinical and therapeutic implications of BRAF fusions in histiocytic disorders
.
Blood Cancer J
.
2022
;
12
(
6
):
97
.
You do not currently have access to this content.
Sign in via your Institution