• Loss of PRC1.1 leads to resistance to menin inhibition through epigenetic reactivation of noncanonical menin targets in AML cell models.

  • PRC1.1-deficient AML cells are susceptible to BCL2 inhibition and venetoclax can overcome menin inhibitor resistance in these cells.

Abstract

Menin inhibitors that disrupt the menin-MLL interaction hold promise for treating specific acute myeloid leukemia (AML) subtypes, including those with KMT2A rearrangements (KMT2A-r), yet resistance remains a challenge. Here, through systematic chromatin-focused CRISPR screens, along with genetic, epigenetic, and pharmacologic studies in a variety of human and mouse KMT2A-r AML models, we uncovered a potential resistance mechanism independent of canonical menin-MLL targets. We show that a group of noncanonical menin targets, which are bivalently cooccupied by active menin and repressive H2AK119ub marks, are typically downregulated after menin inhibition. Loss of polycomb repressive complex 1.1 (PRC1.1) subunits, such as polycomb group ring finger 1 (PCGF1) or BCL6 corepressor (BCOR), leads to menin inhibitor resistance by epigenetic reactivation of these noncanonical targets, including MYC. Genetic and pharmacological inhibition of MYC can resensitize PRC1.1-deficient leukemia cells to menin inhibition. Moreover, we demonstrate that leukemia cells with the loss of PRC1.1 subunits exhibit reduced monocytic gene signatures and are susceptible to BCL2 inhibition, and that combinational treatment with venetoclax overcomes the resistance to menin inhibition in PRC1.1-deficient leukemia cells. These findings highlight the important roles of PRC1.1 and its regulated noncanonical menin targets in modulating the menin inhibitor response and provide potential strategies to treat leukemia with compromised PRC1.1 function.

1.
Krivtsov
AV
,
Armstrong
SA
.
MLL translocations, histone modifications and leukaemia stem-cell development
.
Nat Rev Cancer
.
2007
;
7
(
11
):
823
-
833
.
2.
Issa
GC
,
Ravandi
F
,
DiNardo
CD
,
Jabbour
E
,
Kantarjian
HM
,
Andreeff
M
.
Therapeutic implications of menin inhibition in acute leukemias
.
Leukemia
.
2021
;
35
(
9
):
2482
-
2495
.
3.
Yokoyama
A
,
Somervaille
TC
,
Smith
KS
,
Rozenblatt-Rosen
O
,
Meyerson
M
,
Cleary
ML
.
The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis
.
Cell
.
2005
;
123
(
2
):
207
-
218
.
4.
Yokoyama
A
,
Cleary
ML
.
Menin critically links MLL proteins with LEDGF on cancer-associated target genes
.
Cancer Cell
.
2008
;
14
(
1
):
36
-
46
.
5.
Kühn
MW
,
Song
E
,
Feng
Z
, et al
.
Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1166
-
1181
.
6.
Klossowski
S
,
Miao
H
,
Kempinska
K
, et al
.
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
.
J Clin Invest
.
2020
;
130
(
2
):
981
-
997
.
7.
Krivtsov
AV
,
Evans
K
,
Gadrey
JY
, et al
.
A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia
.
Cancer Cell
.
2019
;
36
(
6
):
660
-
673.e11
.
8.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al
.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
9.
Perner
F
,
Stein
EM
,
Wenge
DV
, et al
.
MEN1 mutations mediate clinical resistance to menin inhibition
.
Nature
.
2023
;
615
(
7954
):
913
-
919
.
10.
Zhou
X
,
Zhang
P
,
Aryal
S
,
Zhang
L
,
Lu
R
.
UTX loss alters therapeutic responses in KMT2A-rearranged acute myeloid leukemia
.
Leukemia
.
2023
;
37
(
1
):
226
-
230
.
11.
Soto-Feliciano
YM
,
Sánchez-Rivera
FJ
,
Perner
F
, et al
.
A molecular switch between mammalian MLL complexes dictates response to menin-MLL inhibition
.
Cancer Discov
.
2023
;
13
(
1
):
146
-
169
.
12.
Mahdavi
L
,
Lenard
A
,
Xie
HM
, et al
.
Clonal evolution mediates Menin-inhibitor resistance in KMT2A-rearranged leukemias
.
bioRxiv
.
Preprint posted online 16 March 2023
.
13.
Zhang
H
,
Zhang
Y
,
Zhou
X
, et al
.
Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen
.
Elife
.
2020
;
9
:
e57858
.
14.
Li
W
,
Xu
H
,
Xiao
T
, et al
.
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
.
Genome Biol
.
2014
;
15
(
12
):
554
.
15.
Huttlin
EL
,
Bruckner
RJ
,
Navarrete-Perea
J
, et al
.
Dual proteome-scale networks reveal cell-specific remodeling of the human interactome
.
Cell
.
2021
;
184
(
11
):
3022
-
3040.e28
.
16.
Meyers
RM
,
Bryan
JG
,
McFarland
JM
, et al
.
Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
.
Nat Genet
.
2017
;
49
(
12
):
1779
-
1784
.
17.
Cheung
N
,
Fung
TK
,
Zeisig
BB
, et al
.
Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia
.
Cancer Cell
.
2016
;
29
(
1
):
32
-
48
.
18.
Nakao
F
,
Setoguchi
K
,
Semba
Y
, et al
.
Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic venetoclax resistance
.
Leukemia
.
2023
;
37
(
5
):
1028
-
1038
.
19.
Piunti
A
,
Shilatifard
A
.
The roles of Polycomb repressive complexes in mammalian development and cancer
.
Nat Rev Mol Cell Biol
.
2021
;
22
(
5
):
326
-
345
.
20.
Neff
T
,
Sinha
AU
,
Kluk
MJ
, et al
.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
13
):
5028
-
5033
.
21.
Shi
J
,
Wang
E
,
Zuber
J
, et al
.
The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia
.
Oncogene
.
2013
;
32
(
7
):
930
-
938
.
22.
Schaefer
EJ
,
Wang
HC
,
Karp
HQ
, et al
.
BCOR and BCORL1 mutations drive epigenetic reprogramming and oncogenic signaling by unlinking PRC1.1 from target genes
.
Blood Cancer Discov
.
2022
;
3
(
2
):
116
-
135
.
23.
Stock
JK
,
Giadrossi
S
,
Casanova
M
, et al
.
Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells
.
Nat Cell Biol
.
2007
;
9
(
12
):
1428
-
1435
.
24.
Zhou
W
,
Zhu
P
,
Wang
J
, et al
.
Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
.
Mol Cell
.
2008
;
29
(
1
):
69
-
80
.
25.
Nakagawa
T
,
Kajitani
T
,
Togo
S
, et al
.
Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation
.
Genes Dev
.
2008
;
22
(
1
):
37
-
49
.
26.
Liberzon
A
,
Subramanian
A
,
Pinchback
R
,
Thorvaldsdóttir
H
,
Tamayo
P
,
Mesirov
JP
.
Molecular signatures database (MSigDB) 3.0
.
Bioinformatics
.
2011
;
27
(
12
):
1739
-
1740
.
27.
Borthakur
G
,
Odenike
O
,
Aldoss
I
, et al
.
A phase 1 study of the pan-bromodomain and extraterminal inhibitor mivebresib (ABBV-075) alone or in combination with venetoclax in patients with relapsed/refractory acute myeloid leukemia
.
Cancer
.
2021
;
127
(
16
):
2943
-
2953
.
28.
Bui
MH
,
Lin
X
,
Albert
DH
, et al
.
Preclinical characterization of BET family bromodomain inhibitor ABBV-075 suggests combination therapeutic strategies
.
Cancer Res
.
2017
;
77
(
11
):
2976
-
2989
.
29.
Local
A
,
Zhang
H
,
Benbatoul
KD
, et al
.
APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression, and induces DNA damage in acute myeloid leukemia cells
.
Mol Cancer Ther
.
2018
;
17
(
6
):
1177
-
1186
.
30.
Cochran
AG
,
Conery
AR
,
Sims
RJ
.
3rd. Bromodomains: a new target class for drug development
.
Nat Rev Drug Discov
.
2019
;
18
(
8
):
609
-
628
.
31.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
32.
Zuber
J
,
McJunkin
K
,
Fellmann
C
, et al
.
Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi
.
Nat Biotechnol
.
2011
;
29
(
1
):
79
-
83
.
33.
Fiskus
W
,
Mill
CP
,
Birdwell
C
, et al
.
Targeting of epigenetic co-dependencies enhances anti-AML efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1
.
Blood Cancer J
.
2023
;
13
(
1
):
53
.
34.
Kelly
MJ
,
So
J
,
Rogers
AJ
, et al
.
Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis
.
Nat Commun
.
2019
;
10
(
1
):
1347
.
35.
Nakajima-Takagi
Y
,
Oshima
M
,
Takano
J
, et al
.
Polycomb repressive complex 1.1 coordinates homeostatic and emergency myelopoiesis
.
Elife
.
2023
;
12
:
e83004
.
36.
Damm
F
,
Chesnais
V
,
Nagata
Y
, et al
.
BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders
.
Blood
.
2013
;
122
(
18
):
3169
-
3177
.
37.
Grossmann
V
,
Tiacci
E
,
Holmes
AB
, et al
.
Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype
.
Blood
.
2011
;
118
(
23
):
6153
-
6163
.
You do not currently have access to this content.
Sign in via your Institution