• We have used LR-PCR and NGS to completely sequence RHD genes in a variety of blood donors.

  • The results show correlation between intronic SNPs and common Rh haplotypes, thus establishing reference alleles.

The Rh blood group system (ISBT004) is the second most important blood group after ABO and is the most polymorphic one, with 55 antigens encoded by 2 genes, RHD and RHCE. This research uses next-generation sequencing (NGS) to sequence the complete RHD gene by amplifying the whole gene using overlapping long-range polymerase chain reaction (LR-PCR) amplicons. The aim was to study different RHD alleles present in the population to establish reference RHD allele sequences by using the analysis of intronic single-nucleotide polymorphisms (SNPs) and their correlation to a specific Rh haplotype. Genomic DNA samples (n = 69) from blood donors of different serologically predicted genotypes including R1R1 (DCe/DCe), R2R2 (DcE/DcE), R1R2 (DCe/DcE), R2RZ (DcE/DCE), R1r (DCe/dce), R2r (DcE/dce), and R0r (Dce/dce) were sequenced and data were then mapped to the human genome reference sequence hg38. We focused on the analysis of hemizygous samples, as these by definition will only have a single copy of RHD. For the 69 samples sequenced, different exonic SNPs were detected that correlate with known variants. Multiple intronic SNPs were found in all samples: 21 intronic SNPs were present in all samples indicating their specificity to the RHD*DAU0 (RHD*10.00) haplotype which the hg38 reference sequence encodes. Twenty-three intronic SNPs were found to be R2 haplotype specific, and 15 were linked to R1, R0, and RZ haplotypes. In conclusion, intronic SNPs may represent a novel diagnostic approach to investigate known and novel variants of the RHD and RHCE genes, while being a useful approach to establish reference RHD allele sequences.

The Rh blood group system (ISBT004) is the second most important blood group after ABO1,2  and one of the most polymorphic blood group systems. The RHD and the RHCE genes are located on chromosome 1 (1p33.1_1p36) and encode the RhD protein and the RhCcEe protein, respectively.3,4  The D antigen is the most clinically significant antigen in the Rh system due to its high immunogenicity and to being the main cause of hemolytic disease of the fetus and newborn (HDFN).5  The RHD and the RHCE genes show 93.8% homology in their introns and coding exons.6  The similarities between these 2 genes give an indication to their evolutionary rise from the same ancestral gene through duplication.6-8  Recombination, deletion, and point mutations in these 2 genes generate the 8 most common Rh haplotypes, which include: R1 (DCe), R2 (DcE), R0 (Dce), RZ (DCE), r (dce), ry (dCE), r′ (dCe), and r″ (dcE).9 

Serological testing is fast, cost-friendly, and efficient; however, it is limited by many factors: for instance, the availability of antisera,10,11  reactivity of the antibodies, and antigen status (like weak or partial expression). Current assignment of a partial or a weak D phenotype would require an extensive collection of monoclonal anti-D. Monoclonals to low-frequency Rh antigens to identify specific partial D phenotypes are unavailable. Serological testing also leads to prediction of the Rh genotype based on the most common haplotype present in the population, which, for some cases, is incorrect.12 

Unlike serological testing, genotyping provides the freedom to analyze a wider range of blood antigens including low-frequency antigens, for instance: Goa, BARC, and Tar which can cause HDFN and alloimmunization.1  Complete blood group genotyping (BGG) could be widely used in transfusion practice where serology fails to clarify issues or resolve discrepancies. Extensive efforts have been made to alternatively use molecular genotyping ranging from low to high throughput.13  Different DNA microarray-based tests were introduced that enable genotyping of variant blood groups by targeting specific single-nucleotide polymorphisms (SNPs).14-19  Although these assays are very accurate, they have limitations. They are designed to target predefined nucleotides or DNA regions through polymerase chain reaction (PCR), whereas novel variants remain unknown.13,20  Complete DNA sequencing could be the most effective technique to thoroughly study blood group variations and overcome limitations in other assays.20,21 

Since it was introduced in 2005, next-generation sequencing (NGS) has greatly impacted the genetic research field by elevating both throughput and data generated, and at the same time lowering significantly the cost of sequencing per nucleotide.13,14,22-24  NGS is used in HLA testing,25  which creates a strong impetus to introduce NGS for BGG.26  Genotyping could be used to genotype blood transfusion–dependent patients who are at risk of alloimmunization.27-30  It could be used to genotype donors and create a database that would make finding and recall of compatible donors for transfusion easier.14,31-33  For these databases, reference sequences for all blood group genes are critical to allow effective BGG.26 

Different studies have aimed to use NGS in BGG using a variety of approaches. Dezan et al,27  Chou et al,30  and Schoeman et al34  used exome sequencing to identify Rh variants but the high similarity between the RHD and RHCE genes makes it challenging to analyze data, especially in exons 8 and 10 where there are no differences between the 2 genes. Hyland et al35  used long-range PCR (LR-PCR) to amplify the RHD gene from exon 2 to exon 7 but omitted exons 1, 8, 9, and 10. We aimed to use LR-PCR to amplify the complete gene to get a full RHD sequence including promoter, introns, and all exons. The aim was to achieve full RHD sequencing to provide utility for RHD variant detection, with a follow-up in the future of full RHCE sequencing.

Rh-associated glycoprotein gene (RHAG; ISBT030) mutations have been linked to disturbed RhD expression.36-38  Therefore, we also aimed to sequence the RHAG gene for samples that showed weak D reactivity by serology and where no mutations in the RHD gene were detected.

All samples collected in our study were tested for RHD zygosity using droplet digital PCR (dPCR) to allow us to use a large number of hemizygous RHD samples to unequivocally establish reference alleles for the RHD gene. By studying intronic SNPs and their relationship to specific Rh haplotypes, it is clear that there is a significant difference between the R2 haplotype and other haplotypes.

Sample collection and processing

Donor blood samples (n = 123) were supplied in EDTA tubes by the National Health Service Blood and Transplant (NHSBT; Bristol, United Kingdom). Inclusion criteria for blood samples was either their Rh haplotype (R1, R2, R0, RZ; n = 95) or by their D reactivity (weak D; n = 28). Samples were serologically phenotyped for ABO, Rh, and other blood groups by the NHSBT and were properly consented, anonymized, and supplied with full ethical approval. Blood tubes were centrifuged at 2500g for 10 minutes at room temperature. Plasma on the top layer was carefully disposed and buffy coat was collected into a 1.5-mL tube; the remaining content was discarded.

Genomic DNA extraction and zygosity testing

Genomic DNA (gDNA) was extracted from buffy coat using the QIAamp DNA Blood Mini kit (Qiagen Ltd) following the manufacturer’s guidelines. gDNA concentration was determined on the Qubit 2.0 Fluorometer (Life Technologies) using the Qubit double-stranded DNA High Sensitivity assay kit (Life Technologies). gDNA was finally stored at −20°C. Samples were tested for zygosity with the aim of knowing the number of RHD alleles present for subsequent sequence analysis. The RHD zygosity was determined for all samples using dPCR to determine whether a sample was hemizygous (Dd) or homozygous (DD).12,39  Samples were tested for RHD exon 5 (RHD5) and RHD exon 7 (RHD7) against the reference gene AGO1 on chromosome 1.12,39  The droplet reader in combination with QuantaSoft software v1.7.4 analyzed the droplet signals and differentiated between negative and positive ones, creating an absolute concentration of DNA. The number of RHD copies per microliter present in a sample was compared with the reference gene AGO1 copies per microliter.

Primer design

Six sets of primers (Table 1) were designed using the Primer3 software40  and CLC Main Workbench 9 software (Qiagen Ltd) to amplify the RHD gene in 6 LR-PCR amplicons (Figure 1), with ∼1 kb overlap between each of them. To eliminate amplification from the RHCE gene, primers were designed around intronic differences between the RHD and the RHCE genes positioned at the 3′ end to create RHD-specific primers. Even though exons 8 and 10 for the RHD and the RHCE genes are identical, there are intronic differences between the 2 genes that have been used to create RHD-specific primers. To ensure primer specificity, primers were assessed using Primer-BLAST on the National Center for Biotechnology Information (NCBI) website.41  In a similar manner, 3 sets of primers (Table 2) were designed to amplify the RHAG gene in 3 amplicons. The primers were ordered in a high-performance liquid chromatography purified form from Eurofins Genomics.

Table 1.

Sequence, exons covered, product sizes, and annealing temperature for primers used for RHD LR-PCR

Primer nameSequence 5′-3′ExonsSize, bpAnnealing temperature, °C
RHD-1 forward ATCCACTTTCCACCTCCCTGC 10 326 62 
RHD-1 reverse TCTTTGCACTTCTTCTGACAACA 
RHD-2 forward CTGGGAGAGTGAAGCTGGGTGTGA 2, 3 13 709 62 
RHD-2 reverse TTCATACACATCTCTACCCCCCCTC 
RHD-3 forward GTTTGAGCCCAGGAGTTAGGGACCGAG 10 789 66 
RHD-3 reverse CCCACTGTGACCACCCAGCATTCTA 
RHD-4 forward CATACCTTTGAATTAAGCACTTCAC 5, 6, 7 9 895 66 
RHD-4 reverse CAGAATGGCCTTTACCAGCCAT 
RHD-5 forward GTTCAAGCTGTCAAGGAGACATCACTATACA 11 628 65 
RHD-5 reverse CCAGTTTTAAGAATTTGTCGGCCGGTCG 
RHD-6 forward ATACATTCCATCCAGAACTGTTCACC 9, 10 11 284 64 
RHD-6 reverse AGGCCAAGAGATCCTGGTGAAACTATCC 
Primer nameSequence 5′-3′ExonsSize, bpAnnealing temperature, °C
RHD-1 forward ATCCACTTTCCACCTCCCTGC 10 326 62 
RHD-1 reverse TCTTTGCACTTCTTCTGACAACA 
RHD-2 forward CTGGGAGAGTGAAGCTGGGTGTGA 2, 3 13 709 62 
RHD-2 reverse TTCATACACATCTCTACCCCCCCTC 
RHD-3 forward GTTTGAGCCCAGGAGTTAGGGACCGAG 10 789 66 
RHD-3 reverse CCCACTGTGACCACCCAGCATTCTA 
RHD-4 forward CATACCTTTGAATTAAGCACTTCAC 5, 6, 7 9 895 66 
RHD-4 reverse CAGAATGGCCTTTACCAGCCAT 
RHD-5 forward GTTCAAGCTGTCAAGGAGACATCACTATACA 11 628 65 
RHD-5 reverse CCAGTTTTAAGAATTTGTCGGCCGGTCG 
RHD-6 forward ATACATTCCATCCAGAACTGTTCACC 9, 10 11 284 64 
RHD-6 reverse AGGCCAAGAGATCCTGGTGAAACTATCC 
Figure 1.

TheRHD andRHAG genes amplified in overlapping LR-PCR amplicons. (A) Six overlapping RHD LR-PCR amplicons. (B) Three overlapping RHAG LR-PCR amplicons.

Figure 1.

TheRHD andRHAG genes amplified in overlapping LR-PCR amplicons. (A) Six overlapping RHD LR-PCR amplicons. (B) Three overlapping RHAG LR-PCR amplicons.

Close modal
Table 2.

Sequence, exons covered, product sizes, and annealing temperature for primers used for RHAG LR-PCR

Primer nameSequence 5′-3′ExonsSize, bpAnnealing temperature, °C
RHAG-1 forward TGGTAGGGCTGATTTCCTTGT 6, 7, 8, 9, 10 10 003 62 
RHAG-1 reverse TGGATGTTTTGGCCCAGCTT 
RHAG-2 forward GCTGATCTGAGGGTTACTCCTTT 2, 3, 4, 5 10 519 62 
RHAG-2 reverse AGGAGGATGGGAACGCTAAG 
RHAG-3 forward AATTATTCTGCAGATTTCACCCC 15 083 62 
RHAG-3 reverse GGAGACAAGAATTCCTCCACCTAT 
Primer nameSequence 5′-3′ExonsSize, bpAnnealing temperature, °C
RHAG-1 forward TGGTAGGGCTGATTTCCTTGT 6, 7, 8, 9, 10 10 003 62 
RHAG-1 reverse TGGATGTTTTGGCCCAGCTT 
RHAG-2 forward GCTGATCTGAGGGTTACTCCTTT 2, 3, 4, 5 10 519 62 
RHAG-2 reverse AGGAGGATGGGAACGCTAAG 
RHAG-3 forward AATTATTCTGCAGATTTCACCCC 15 083 62 
RHAG-3 reverse GGAGACAAGAATTCCTCCACCTAT 

LR-PCR optimization

To optimize PCR conditions, different annealing temperatures and primer concentrations were tested to ensure specific amplification from the target gene. In a 50-μL reaction, 1× master mix of LongAmp Hot Start Taq 2× Master Mix (New England Biolabs) was used with 200 ng of gDNA template; 1 μM of the forward and reverse primers was used for all amplicons except for RHD amplicon 3, where 0.2 μM of the forward and reverse primers was used. The Veriti Thermal Cycler (Applied Biosystems) program was set as follows: denaturation at 95°C for 5 minutes, 30 cycles of 95°C for 30 seconds, annealing for 30 seconds, and extension at 65°C for 10 minutes. Annealing temperature varied for each primer set (Tables 1 and 2). The last extension was at 65°C for 10 minutes; finally, samples were held at 4°C. To validate PCR amplification, PCR products were run on a 0.7% wt/vol agarose gel in 1× Tris-acetate-EDTA buffer next to a Quick-Load 1-kb Extend DNA Ladder (New England Biolabs).

Library construction, NGS, and data analysis

The LR-PCR products were purified using the Agencourt AMPure XP (Beckman Coulter). Purified amplicons were then quantified using Qubit double-stranded DNA High Sensitivity assay kit (Life Technologies) to create an equimolar pool to ensure an equal depth of coverage across the gene. Pooled amplicons were fragmented using the Ion Xpress Plus Fragment Library Kit (Life Technologies) to create a 200-base-read library and ligated to adaptors using the Ion Xpress Barcode Adapters kit (Life Technologies) following the manufacturer’s protocol. Size selection and library enrichment were carried out as by Sillence et al.12  The enriched library was then sequenced using the Ion PGM Sequencing 200 kit v2 (Life Technologies) and the Ion Torrent PGM on a 316 chip.

Data (FASTQ) were analyzed using CLC Main Workbench 9 software (Qiagen Ltd). Short reads were aligned to the human reference sequence hg38 downloaded from the NCBI database.42  The RHCE gene was masked in the RHD gene analysis by converting it into trimmed track to prevent reads from scattering. Variant detection was performed on a minimum coverage of 30 and variants detected were analyzed on a single-base basis considering different parameters including number and percentage of reads and nucleotide count.43  The reference SNP number44  was then found for each SNP detected.

RHD zygosity

Samples (n = 123; Table 3) with different Rh genotypes presumed from serology results were first tested using dPCR to determine RHD zygosity. The presence or absence of the RHD amplification on the dPCR platform was used to determine whether the samples were RHD or RHD+, respectively. Samples showing RHD5 or RHD7 to AGO1 ratios close to 1 were determined to be homozygous RHD+ and samples with ratios close to 0.5 were classified as hemizygous RHD+ (Table 3). Samples included 7 R1R1 (DCe/DCe), 21 R1r (DCe/dce), 7 R2R2 (DcE/DcE), 15 R2r (DcE/dce), 66 R1R2 (DCe/DcE), 6 R0r (Dce/dce), and 1 R2RZ (DcE/DCE) as determined by serology. Zygosity results were compatible with the serologically predicted genotype except for the following samples. Sample (004_14), previously classified by serology as being phenotypically R1r (DCe/dce), expressed ratios of 1.06 and 0.99 for the RHD5 and RHD7 multiplex reactions, respectively (Table 3). This result contradicted previous serological classifications and indicated that the sample expressed 2 copies of the RHD gene. Sample (004_42), previously classified by serology as being phenotypically R2R2, expressed ratios of 0.54 and 0.47 for the RHD5 and RHD7 multiplex reactions, respectively (Table 3). This result contradicted previous serological classifications and indicated that the sample expressed 1 copy of the RHD gene (hemizygous). In a similar manner, samples 004_35, 004_36, 004_37, 004_38, 004_39, and 004_40 were previously classified by serology as being phenotypically R1R2. However, given the ratios from the RHD5 (average 0.51) and RHD7 (average 0.51) multiplex reactions, these samples only express 1 copy of the RHD gene and are therefore classified as being RHD hemizygous. One R1R1 sample (004_07) showed discrepancy between hemizygous RHD5 (ratio 0.54) and homozygous RHD7 (ratio 1.01), indicating deletion of exon 5 in 1 of the RHD alleles.

Table 3.

Serologically predicted genotype, ethnicity of donors, dPCR RHD zygosity results, and RHD allele as determined by NGS for samples sequenced (n = 69)

Sample no.Rh serology*Ethnicity*RHD5-to-AGO1 ratioRHD7-to-AGO1 ratiodPCR RHD zygosityAllele
004_01 R1R1 Caucasian 1.12 1.05 Homozygous RHD*01 
004_02 R1R1 Caucasian 1.12 1.03 Homozygous RHD*01 
004_03 R1R1 Other 1.01 1.04 Homozygous RHD*01 
004_04 R1R1 Caucasian 1.07 1.03 Homozygous RHD*01 
004_05 R1R1 Caucasian 1.01 1.06 Homozygous RHD*01 
004_06 R1R1 Caucasian 0.99 1.04 Homozygous RHD*01 
004_07 R1R1 Caucasian 0.54 1.01 Discrepancy RHD*01W.01 
004_08 R1Caucasian 0.54 0.57 Hemizygous RHD*01 
004_09 R1Caucasian 0.54 0.53 Hemizygous RHD*01 
004_10 R1Chinese 0.51 0.56 Hemizygous RHD*01 
004_11 R1Caucasian 0.53 0.54 Hemizygous RHD*01 
004_12 R1Caucasian 0.55 0.52 Hemizygous RHD*01 
004_13 R1Caucasian 0.54 0.6 Hemizygous RHD*01 
004_14 R1r Caucasian 1.06 0.99 Homozygous RHD*01 
004_15 R1Caucasian 0.53 0.50 Hemizygous RHD*01W.01 
004_16 R1Caucasian 0.54 0.52 Hemizygous RHD*01W.01 
004_17 R1Caucasian 0.58 0.56 Hemizygous RHD*01W.01 
004_18 R1Caucasian 0.54 0.52 Hemizygous RHD*01W.01 
004_19 R1Caucasian 0.54 0.47 Hemizygous RHD*01W.01 
004_20 R1Caucasian 0.53 0.57 Hemizygous RHD*01W.01 
004_21 R1Caucasian 0.52 0.57 Hemizygous RHD*01W.01 
004_22 R1Caucasian 0.54 0.53 Hemizygous RHD*01W.01 
004_23 R1Caucasian 0.52 0.53 Hemizygous RHD*01W.01 
004_24 R1Caucasian 0.53 0.54 Hemizygous RHD*01W.01 
004_25 R1Caucasian 0.53 0.51 Hemizygous RHD*01W.01 
004_26 R1Caucasian 0.57 0.52 Hemizygous RHD*01W.01 
004_27 R1Caucasian 0.56 0.54 Hemizygous RHD*01W.01 
004_28 R1Caucasian 0.53 0.52 Hemizygous RHD*01W.03 
004_29 R1R2 Caucasian 1.09 1.03 Homozygous RHD*01 
004_30 R1R2 Caucasian 0.95 0.94 Homozygous RHD*01 
004_31 R1R2 Caucasian 1.08 1.05 Homozygous RHD*01 
004_32 R1R2 Caucasian 0.97 1.04 Homozygous RHD*01 
004_33 R1R2 Caucasian 1.03 1.08 Homozygous RHD*01 
004_34 R1R2 Caucasian 0.98 1.08 Homozygous RHD*01 
004_35 R1R2 Caucasian 0.46 0.51 Hemizygous§ RHD*01W.02 
004_36 R1R2 Caucasian 0.51 0.51 Hemizygous§ RHD*01 
004_37 R1R2 Caucasian 0.53 0.49 Hemizygous§ RHD*01 
004_38 R1R2 Caucasian 0.51 0.53 Hemizygous§ RHD*01 
004_39 R1R2 Caucasian 0.52 0.51 Hemizygous§ RHD*01 
004_40 R1R2 Caucasian 0.53 0.52 Hemizygous§ RHD*01 
004_41 R2R2 Caucasian 1.01 0.99 Homozygous RHD*01W.02 
004_42 R2R2 Not disclosed 0.54 0.47 Hemizygous|| RHD*01W.02 
004_43 R2R2 Caucasian 1.01 1.02 Homozygous RHD*01 
004_44 R2R2 Caucasian 1.01 0.99 Homozygous RHD*01 
004_45 R2R2 Caucasian 1.03 1.02 Homozygous RHD*01 
004_46 R2R2 Caucasian 1.02 1.01 Homozygous RHD*01 
004_47 R2R2 Caucasian 1.01 Homozygous RHD*01 
004_48 R2Caucasian 0.53 0.54 Hemizygous RHD*01 
004_49 R2Caucasian 0.53 0.51 Hemizygous RHD*01 
004_50 R2Caucasian 0.53 0.51 Hemizygous RHD*01 
004_51 R2Caucasian 0.52 0.56 Hemizygous RHD*01 
004_52 R2Caucasian 0.48 0.54 Hemizygous RHD*01 
004_53 R2Caucasian 0.53 0.47 Hemizygous RHD*01 
004_54 R2Caucasian 0.52 0.51 Hemizygous RHD*01W.02 
004_55 R2Caucasian 0.53 0.52 Hemizygous RHD*01W.02 
004_56 R2Caucasian 0.53 0.5 Hemizygous RHD*01W.02 
004_57 R2Caucasian 0.51 0.57 Hemizygous RHD*01W.02 
004_58 R2Caucasian 0.58 0.56 Hemizygous RHD*01W.02 
004_59 R2Caucasian 0.51 0.53 Hemizygous RHD*01W.02 
004_60 R2Caucasian 0.57 0.52 Hemizygous RHD*01W.02 
004_61 R2Caucasian 0.55 0.53 Hemizygous RHD*01W.02 
004_62 R2Caucasian 0.58 0.52 Hemizygous RHD*01W.02 
004_63 R0Caucasian 0.46 0.46 Hemizygous RHD*01 
004_64 R0Caucasian 0.5 0.53 Hemizygous RHD*01 
004_65 R0Caucasian 0.46 0.49 Hemizygous RHD*01 
004_66 R0Caucasian 0.49 0.52 Hemizygous RHD*01 
004_67 R0Caucasian 0.53 0.51 Hemizygous RHD*01 
004_68 R0Caucasian 0.52 0.51 Hemizygous RHD*01 
004_69 R2RZ Caucasian 1.02 1.02 Homozygous RHD*01 
004_70- 004_123 R1R2 — 1.0 1.0 Homozygous Not sequenced 
Sample no.Rh serology*Ethnicity*RHD5-to-AGO1 ratioRHD7-to-AGO1 ratiodPCR RHD zygosityAllele
004_01 R1R1 Caucasian 1.12 1.05 Homozygous RHD*01 
004_02 R1R1 Caucasian 1.12 1.03 Homozygous RHD*01 
004_03 R1R1 Other 1.01 1.04 Homozygous RHD*01 
004_04 R1R1 Caucasian 1.07 1.03 Homozygous RHD*01 
004_05 R1R1 Caucasian 1.01 1.06 Homozygous RHD*01 
004_06 R1R1 Caucasian 0.99 1.04 Homozygous RHD*01 
004_07 R1R1 Caucasian 0.54 1.01 Discrepancy RHD*01W.01 
004_08 R1Caucasian 0.54 0.57 Hemizygous RHD*01 
004_09 R1Caucasian 0.54 0.53 Hemizygous RHD*01 
004_10 R1Chinese 0.51 0.56 Hemizygous RHD*01 
004_11 R1Caucasian 0.53 0.54 Hemizygous RHD*01 
004_12 R1Caucasian 0.55 0.52 Hemizygous RHD*01 
004_13 R1Caucasian 0.54 0.6 Hemizygous RHD*01 
004_14 R1r Caucasian 1.06 0.99 Homozygous RHD*01 
004_15 R1Caucasian 0.53 0.50 Hemizygous RHD*01W.01 
004_16 R1Caucasian 0.54 0.52 Hemizygous RHD*01W.01 
004_17 R1Caucasian 0.58 0.56 Hemizygous RHD*01W.01 
004_18 R1Caucasian 0.54 0.52 Hemizygous RHD*01W.01 
004_19 R1Caucasian 0.54 0.47 Hemizygous RHD*01W.01 
004_20 R1Caucasian 0.53 0.57 Hemizygous RHD*01W.01 
004_21 R1Caucasian 0.52 0.57 Hemizygous RHD*01W.01 
004_22 R1Caucasian 0.54 0.53 Hemizygous RHD*01W.01 
004_23 R1Caucasian 0.52 0.53 Hemizygous RHD*01W.01 
004_24 R1Caucasian 0.53 0.54 Hemizygous RHD*01W.01 
004_25 R1Caucasian 0.53 0.51 Hemizygous RHD*01W.01 
004_26 R1Caucasian 0.57 0.52 Hemizygous RHD*01W.01 
004_27 R1Caucasian 0.56 0.54 Hemizygous RHD*01W.01 
004_28 R1Caucasian 0.53 0.52 Hemizygous RHD*01W.03 
004_29 R1R2 Caucasian 1.09 1.03 Homozygous RHD*01 
004_30 R1R2 Caucasian 0.95 0.94 Homozygous RHD*01 
004_31 R1R2 Caucasian 1.08 1.05 Homozygous RHD*01 
004_32 R1R2 Caucasian 0.97 1.04 Homozygous RHD*01 
004_33 R1R2 Caucasian 1.03 1.08 Homozygous RHD*01 
004_34 R1R2 Caucasian 0.98 1.08 Homozygous RHD*01 
004_35 R1R2 Caucasian 0.46 0.51 Hemizygous§ RHD*01W.02 
004_36 R1R2 Caucasian 0.51 0.51 Hemizygous§ RHD*01 
004_37 R1R2 Caucasian 0.53 0.49 Hemizygous§ RHD*01 
004_38 R1R2 Caucasian 0.51 0.53 Hemizygous§ RHD*01 
004_39 R1R2 Caucasian 0.52 0.51 Hemizygous§ RHD*01 
004_40 R1R2 Caucasian 0.53 0.52 Hemizygous§ RHD*01 
004_41 R2R2 Caucasian 1.01 0.99 Homozygous RHD*01W.02 
004_42 R2R2 Not disclosed 0.54 0.47 Hemizygous|| RHD*01W.02 
004_43 R2R2 Caucasian 1.01 1.02 Homozygous RHD*01 
004_44 R2R2 Caucasian 1.01 0.99 Homozygous RHD*01 
004_45 R2R2 Caucasian 1.03 1.02 Homozygous RHD*01 
004_46 R2R2 Caucasian 1.02 1.01 Homozygous RHD*01 
004_47 R2R2 Caucasian 1.01 Homozygous RHD*01 
004_48 R2Caucasian 0.53 0.54 Hemizygous RHD*01 
004_49 R2Caucasian 0.53 0.51 Hemizygous RHD*01 
004_50 R2Caucasian 0.53 0.51 Hemizygous RHD*01 
004_51 R2Caucasian 0.52 0.56 Hemizygous RHD*01 
004_52 R2Caucasian 0.48 0.54 Hemizygous RHD*01 
004_53 R2Caucasian 0.53 0.47 Hemizygous RHD*01 
004_54 R2Caucasian 0.52 0.51 Hemizygous RHD*01W.02 
004_55 R2Caucasian 0.53 0.52 Hemizygous RHD*01W.02 
004_56 R2Caucasian 0.53 0.5 Hemizygous RHD*01W.02 
004_57 R2Caucasian 0.51 0.57 Hemizygous RHD*01W.02 
004_58 R2Caucasian 0.58 0.56 Hemizygous RHD*01W.02 
004_59 R2Caucasian 0.51 0.53 Hemizygous RHD*01W.02 
004_60 R2Caucasian 0.57 0.52 Hemizygous RHD*01W.02 
004_61 R2Caucasian 0.55 0.53 Hemizygous RHD*01W.02 
004_62 R2Caucasian 0.58 0.52 Hemizygous RHD*01W.02 
004_63 R0Caucasian 0.46 0.46 Hemizygous RHD*01 
004_64 R0Caucasian 0.5 0.53 Hemizygous RHD*01 
004_65 R0Caucasian 0.46 0.49 Hemizygous RHD*01 
004_66 R0Caucasian 0.49 0.52 Hemizygous RHD*01 
004_67 R0Caucasian 0.53 0.51 Hemizygous RHD*01 
004_68 R0Caucasian 0.52 0.51 Hemizygous RHD*01 
004_69 R2RZ Caucasian 1.02 1.02 Homozygous RHD*01 
004_70- 004_123 R1R2 — 1.0 1.0 Homozygous Not sequenced 

The number of RHD copies per microliter present in a sample was compared with the reference gene AGO1 copies per microliter. If a sample presented a ratio of 1, it was considered homozygous; it was considered hemizygous when present with a ratio of 0.5. Bold in the table body represents incompatible results between predicted genotype by serology and dPCR.

—, individual ethnicities not given.

*

As supplied by the NHSBT, Bristol, United Kingdom.

Sample shows discrepancy between hemizygous RHD5 and homozygous RHD7 meaning that 1 of the RHD alleles has a deletion in exon 5.

Eight samples show incompatible dPCR results with serologically predicted genotypes indicating incorrectly predicted genotypes by serology; these samples include:

R1r sample shows the homozygous RHD gene.

§

6 R1R2 samples show the hemizygous RHD gene.

||

R2R2 sample shows the hemizygous RHD gene.

Average ratio.

NGS data

To establish reference RHD allele sequences, we aimed to sequence hemizygous RHD samples; nevertheless, RHD homozygous samples were also included in the sequence analysis to detect weak D that could be undetectable by serological testing due to the presence of a wild-type copy of the RHD allele. We purposely included the 6 R1R2 samples (004_35, 004_36, 004_37, 004_38, 004_39, 004_40) that tested as hemizygous for the RHD gene and included another set of 6 homozygous R1R2 samples (004_29, 004_30, 004_31, 004_32, 004_33, 004_34) for a comparison, which were randomly chosen from the remaining 60 homozygous R1R2 samples.

Samples (n = 69; Table 3) with different Rh serologically predicted genotypes were sequenced on the Ion PGM, including 7 R1R1 (DCe/DCe), 21 R1r (DCe/dce), 7 R2R2 (DcE/DcE), 15 R2r (DcE/dce), 12 R1R2 (DCe/DcE), 6 R0r (Dce/dce), and 1 R2RZ (DcE/DCE). Data were aligned to the hg38 reference sequence using CLC Workbench 9 software (Qiagen Ltd). It is noteworthy that the RHD reference sequence (NC_000001.11)42  is RHD*DAU0 (RHD*10.00), presenting a SNP in exon 8 (1136C>T), causing amino acid change Thr379Met; therefore, all 69 samples presented a SNP in exon 8 (1136T>C) Met379Thr.

Three exonic SNPs and 519 intronic SNPs were detected across the 69 samples. Of the 28 samples that were serologically phenotyped as weak D, 26 of them were confirmed to be weak D by NGS and the RHD allele was determined. One R1r sample (004_28) showed a SNP in exon 1 (8C>G) Ser3Cys that encodes weak D type 3 (RHD*01W.3). Thirteen R1r samples (004_15, 004_16, 004_17, 004_18, 004_19, 004_20, 004_21, 004_22, 004_23, 004_24, 004_25, 004_26, 004_27) and 1 R1R1 sample (004_07) showed a SNP in exon 6, (809T>G) Val270Gly that encodes weak D type 1 (RHD*01W.1). Nine R2r samples (004_54, 004_55, 004_56, 004_57, 004_58, 004_59, 004_60, 004_61, 004_62), 2 R2R2 samples (004_41, 004_42), and 1 R1R2 sample (004_35) showed the exon 9 (1154G>C) SNP that causes amino acid change Gly385Ala, which encodes weak D type 2 (RHD*01W.02).

One R1r sample (004_14) and the R2RZ (004_69) sample were serologically predicted to be weak D but no SNPs in the RHD gene causing amino acid changes in the RhD protein were detected by sequencing. For these 2 samples (004_14 and 004_69), the RHAG gene was sequenced to test whether there were any mutations in the RHAG gene that could be leading to weak D expression. One RHAG exon 6 mutation 808G>A was detected in sample (004_14), causing the Val270Ile change that encodes for the RHAG*04 allele. Sample (004_69) showed a wild-type RHAG*01 allele predicting no amino acid changes.

Intronic SNPs

Due to RHD*DAU0 (RHD*10.00) being the reference sequence hg38, 21 homozygous SNPs were detected in all 69 samples (Table 4) that are specific to the reference allele, that is, RHD*DAU0 (RHD*10.00). Multiple intronic SNPs are suspected to be haplotype specific, for example, 23 SNPs (Table 5) were homozygous SNPs in all samples with the R2 haplotype. They were detected in R2R2, R2r, and in 3 of the 6 R1R2 samples (004_35, 004_36, 004_37), which were determined by dPCR to be hemizygous for RHD gene. These SNPs were also present in 6 R1R2 samples (D homozygous; 004_29, 004_30, 004_31, 004_32, 004_33, 004_34), and in the R2RZ sample (004_69) as heterozygous SNPs.

Table 4.

Position of intronic variations and their reference SNP number detected in all samples sequenced

Positionhg38 (RHD*DAU0)All samplesLocationReference SNP no.*
25 277 761 Intron 1 rs28661958 
25 286 520 Intron 2 rs183024534 
25 286 601 Intron 2 NA 
25 286 605 Intron 2 NA 
25 286 674 Intron 2 NA 
25 286 732 Intron 2 NA 
25 290 908 Intron 3 rs28521909 
25 290 915 Intron 3 rs28562109 
25 295 850 Intron 3 rs28451966 
25 297 140 Intron 3 rs28786680 
25 305 164 Intron 6 rs28703207 
25 308 306 Intron 7 rs28374144 
25 308 317 Intron 7 rs28719684 
25 308 325 Intron 7 rs71493569 
25 308 326 Intron 7 rs71493569 
25 308 403 Intron 7 rs1801096 
25 316 058 Intron 7 rs28453868 
25 319 292 Intron 8 rs28397158 
25 322 588 Intron 9 rs28435180 
25 327 036 Intron 9 rs61777612 
25 329 789 Intron 10 rs28654325 
Positionhg38 (RHD*DAU0)All samplesLocationReference SNP no.*
25 277 761 Intron 1 rs28661958 
25 286 520 Intron 2 rs183024534 
25 286 601 Intron 2 NA 
25 286 605 Intron 2 NA 
25 286 674 Intron 2 NA 
25 286 732 Intron 2 NA 
25 290 908 Intron 3 rs28521909 
25 290 915 Intron 3 rs28562109 
25 295 850 Intron 3 rs28451966 
25 297 140 Intron 3 rs28786680 
25 305 164 Intron 6 rs28703207 
25 308 306 Intron 7 rs28374144 
25 308 317 Intron 7 rs28719684 
25 308 325 Intron 7 rs71493569 
25 308 326 Intron 7 rs71493569 
25 308 403 Intron 7 rs1801096 
25 316 058 Intron 7 rs28453868 
25 319 292 Intron 8 rs28397158 
25 322 588 Intron 9 rs28435180 
25 327 036 Intron 9 rs61777612 
25 329 789 Intron 10 rs28654325 

As the reference sequence is RHD*DAU0 (RHD*10.00), these nucleotide changes are predicted to be RHD*DAU0 (RHD*10.00) specific.

*

From the database of SNPs.44 

Not applicable. Not found in the database of SNPs.44 

Table 5.

Intronic SNPs present in all samples with R2 haplotype

PositionSNPLocationReference SNP no.*
25 282 654 A>G Intron 1 rs3866916 
25 285 089 G>A Intron 2 rs675072 
25 287 909 C>G Intron 2 rs28718098 
25 295 072 G>A Intron 3 rs372986392 
25 295 354 C>T Intron 3 rs2904840 
25 295 489 C>T Intron 3 rs190056379 
25 295 708 G>A Intron 3 rs182346769 
25 295 731 A>G Intron 3 rs201512625 
25 295 739 G>A Intron 3 rs200682399 
25 295 753 A>G Intron 3 rs143670081 
25 298 980 T>C Intron 3 rs2904843 
25 300 575 C>G Intron 3 rs2986167 
25 305 898 A>G Intron 6 rs12126031 
25 307 714 G>A Intron 7 rs2257611 
25 308 845 G>C Intron 7 rs2478025 
25 311 722 T>A Intron 7 rs796579065 
25 316 269 A>G Intron 7 rs2427767 
25 320 442 T>G Intron 8 rs3927482 
25 321 858 T>C Intron 8 rs28669938 
25 323 393 C>T Intron 9 rs77160738 
25 323 618 G>C Intron 9 rs201304363 
25 323 713 G>C Intron 9 rs202154122 
25 327 668 A>G Intron 9 NA 
PositionSNPLocationReference SNP no.*
25 282 654 A>G Intron 1 rs3866916 
25 285 089 G>A Intron 2 rs675072 
25 287 909 C>G Intron 2 rs28718098 
25 295 072 G>A Intron 3 rs372986392 
25 295 354 C>T Intron 3 rs2904840 
25 295 489 C>T Intron 3 rs190056379 
25 295 708 G>A Intron 3 rs182346769 
25 295 731 A>G Intron 3 rs201512625 
25 295 739 G>A Intron 3 rs200682399 
25 295 753 A>G Intron 3 rs143670081 
25 298 980 T>C Intron 3 rs2904843 
25 300 575 C>G Intron 3 rs2986167 
25 305 898 A>G Intron 6 rs12126031 
25 307 714 G>A Intron 7 rs2257611 
25 308 845 G>C Intron 7 rs2478025 
25 311 722 T>A Intron 7 rs796579065 
25 316 269 A>G Intron 7 rs2427767 
25 320 442 T>G Intron 8 rs3927482 
25 321 858 T>C Intron 8 rs28669938 
25 323 393 C>T Intron 9 rs77160738 
25 323 618 G>C Intron 9 rs201304363 
25 323 713 G>C Intron 9 rs202154122 
25 327 668 A>G Intron 9 NA 

Intronic SNPs (hg38) and their reference SNP number were present in R2r, R2R2, R1R2, and R2RZ samples. Intronic SNPs were present as homozygous in all 9 weak D type 2 R2r samples, all 6 R2r samples and all 7 R2R2 samples, and in 3 of the 6 R1R2 samples that tested as hemizygous for the RHD gene by dPCR. These SNPs were also present as heterozygous SNPs in all 6 homozygous R1R2 samples and in the R2RZ sample.

*

From the database of SNPs.44 

Not applicable. Not found in the database of SNPs.44 

Fifteen SNPs (Table 6) were detected as homozygous in all R1R1, R1r and in 3 of 6 R1R2 samples (004_38, 004_39, 004_40), which were shown by dPCR to be hemizygous for the RHD gene. They were also detected in all 6 R0r samples (004_63, 004_64, 004_65, 004_66, 004_67, 004_68). These SNPs were also found as heterozygous SNPs in 6 R1R2 samples (D homozygous) (004_29, 004_30, 004_31, 004_32, 004_33, 004_34), and in the R2RZ sample (004_69). Table 7 shows the different intronic SNPs detected and their correspondence in R2 and R1, R0, RZRHD alleles in comparison with the reference sequence. From the 519 intronic SNPs detected, most were not conserved across each haplotype (data not shown). Most of these SNPs have been reported and show corresponding reference numbers in the database of SNPs.44 

Table 6.

Intronic SNPs present in all samples with R1, R0, and RZ haplotypes

PositionSNPLocationReference SNP no.*
25 284 544 G>C Intron 1 rs2301153 
25 292 953 G>A Intron 3 rs28645510 
25 295 317 G>A Intron 3 rs2986157 
25 295 797 T>A Intron 3 rs2986163 
25 295 800 G>A Intron 3 rs2986164 
25 296 764 A>C Intron 3 rs599792 
25 297 476 A>G Intron 3 rs1830962 
25 298 410 G>C Intron 3 rs1293267 
25 301 905 T>G Intron 5 rs28510210 
25 304 945 A>T Intron 6 rs28685153 
25 307 040 G>C Intron 7 rs3118453 
25 311 520 G>A Intron 7 rs2478028 
25 311 722 T>G Intron 7 rs796579065 
25 320 257 A>C Intron 8 rs28628791 
25 329 839 A>T Intron 10 rs28668998 
PositionSNPLocationReference SNP no.*
25 284 544 G>C Intron 1 rs2301153 
25 292 953 G>A Intron 3 rs28645510 
25 295 317 G>A Intron 3 rs2986157 
25 295 797 T>A Intron 3 rs2986163 
25 295 800 G>A Intron 3 rs2986164 
25 296 764 A>C Intron 3 rs599792 
25 297 476 A>G Intron 3 rs1830962 
25 298 410 G>C Intron 3 rs1293267 
25 301 905 T>G Intron 5 rs28510210 
25 304 945 A>T Intron 6 rs28685153 
25 307 040 G>C Intron 7 rs3118453 
25 311 520 G>A Intron 7 rs2478028 
25 311 722 T>G Intron 7 rs796579065 
25 320 257 A>C Intron 8 rs28628791 
25 329 839 A>T Intron 10 rs28668998 

SNPs were present as homozygous in all 6 R1R1 samples, 1 R1R1 weak D type 1 sample, all 13 R1r weak D type 1 samples, 1 R1r weak D type 3 sample, all 6 R1r samples, 6 R0r samples. These SNPs were also present as hemizygous in 3 of the 6 R1R2 samples that tested as hemizygous for the RHD gene by dPCR. SNPs were also detected as heterozygous SNPs in the 6 homozygous R1R2 samples and 1 R2RZ sample.

*

From the database of SNPs.44 

Table 7.

Position of intronic variations determined by NGS and their corresponding nucleotide in R2 and R1, R0, RZRHD alleles in comparison with the reference sequence (hg38)

Intronic positionReference SNP no.*Intronic locationhg38R1, R0, RZR2
25 277 761 rs28661958 Intron 1 
25 282 654 rs3866916 Intron 1 
25 284 544 rs2301153 Intron 1 
25 285 089 rs675072 Intron 2 
25 286 520 rs183024534 Intron 2 
25 286 601 NA Intron 2 
25 286 605 NA Intron 2 
25 286 674 NA Intron 2 
25 286 732 NA Intron 2 
25 287 909 rs28718098 Intron 2 
25 290 908 rs28521909 Intron 3 
25 290 915 rs28562109 Intron 3 
25 292 953 rs28645510 Intron 3 
25 295 072 rs372986392 Intron 3 
25 295 317 rs2986157 Intron 3 
25 295 354 rs2904840 Intron 3 
25 295 489 rs190056379 Intron 3 
25 295 708 rs182346769 Intron 3 
25 295 731 rs201512625 Intron 3 
25 295 739 rs200682399 Intron 3 
25 295 753 rs143670081 Intron 3 
25 295 797 rs2986163 Intron 3 
25 295 800 rs2986164 Intron 3 
25 295 850 rs28451966 Intron 3 
25 296 764 rs599792 Intron 3 
25 297 140 rs28786680 Intron 3 
25 297 476 rs1830962 Intron 3 
25 298 410 rs1293267 Intron 3 
25 298 980 rs2904843 Intron 3 
25 300 575 rs2986167 Intron 3 
25 301 905 rs28510210 Intron 5 
25 304 945 rs28685153 Intron 6 
25 305 164 rs28703207 Intron 6 
25 305 898 rs12126031 Intron 6 
25 307 040 rs3118453 Intron 7 
25 307 714 rs2257611 Intron 7 
25 308 306 rs28374144 Intron 7 
25 308 317 rs28719684 Intron 7 
25 308 325 rs71493569 Intron 7 
25 308 326 rs71493569 Intron 7 
25 308 403 rs1801096 Intron 7 
25 308 845 rs2478025 Intron 7 
25 311 520 rs2478028 Intron 7 
25 311 722 rs796579065 Intron 7 
25 316 058 rs28453868 Intron 7 
25 316 269 rs2427767 Intron 7 
25 319 292 rs28397158 Intron 8 
25 320 257 rs28628791 Intron 8 
25 320 442 rs3927482 Intron 8 
25 321 858 rs28669938 Intron 8 
25 322 588 rs28435180 Intron 9 
25 323 393 rs77160738 Intron 9 
25 323 618 rs201304363 Intron 9 
25 323 713 rs202154122 Intron 9 
25 327 036 rs61777612 Intron 9 
25 327 668 NA Intron 9 
25 329 789 rs28654325 Intron 10 
25 329 839 rs28668998 Intron 10 
Intronic positionReference SNP no.*Intronic locationhg38R1, R0, RZR2
25 277 761 rs28661958 Intron 1 
25 282 654 rs3866916 Intron 1 
25 284 544 rs2301153 Intron 1 
25 285 089 rs675072 Intron 2 
25 286 520 rs183024534 Intron 2 
25 286 601 NA Intron 2 
25 286 605 NA Intron 2 
25 286 674 NA Intron 2 
25 286 732 NA Intron 2 
25 287 909 rs28718098 Intron 2 
25 290 908 rs28521909 Intron 3 
25 290 915 rs28562109 Intron 3 
25 292 953 rs28645510 Intron 3 
25 295 072 rs372986392 Intron 3 
25 295 317 rs2986157 Intron 3 
25 295 354 rs2904840 Intron 3 
25 295 489 rs190056379 Intron 3 
25 295 708 rs182346769 Intron 3 
25 295 731 rs201512625 Intron 3 
25 295 739 rs200682399 Intron 3 
25 295 753 rs143670081 Intron 3 
25 295 797 rs2986163 Intron 3 
25 295 800 rs2986164 Intron 3 
25 295 850 rs28451966 Intron 3 
25 296 764 rs599792 Intron 3 
25 297 140 rs28786680 Intron 3 
25 297 476 rs1830962 Intron 3 
25 298 410 rs1293267 Intron 3 
25 298 980 rs2904843 Intron 3 
25 300 575 rs2986167 Intron 3 
25 301 905 rs28510210 Intron 5 
25 304 945 rs28685153 Intron 6 
25 305 164 rs28703207 Intron 6 
25 305 898 rs12126031 Intron 6 
25 307 040 rs3118453 Intron 7 
25 307 714 rs2257611 Intron 7 
25 308 306 rs28374144 Intron 7 
25 308 317 rs28719684 Intron 7 
25 308 325 rs71493569 Intron 7 
25 308 326 rs71493569 Intron 7 
25 308 403 rs1801096 Intron 7 
25 308 845 rs2478025 Intron 7 
25 311 520 rs2478028 Intron 7 
25 311 722 rs796579065 Intron 7 
25 316 058 rs28453868 Intron 7 
25 316 269 rs2427767 Intron 7 
25 319 292 rs28397158 Intron 8 
25 320 257 rs28628791 Intron 8 
25 320 442 rs3927482 Intron 8 
25 321 858 rs28669938 Intron 8 
25 322 588 rs28435180 Intron 9 
25 323 393 rs77160738 Intron 9 
25 323 618 rs201304363 Intron 9 
25 323 713 rs202154122 Intron 9 
25 327 036 rs61777612 Intron 9 
25 327 668 NA Intron 9 
25 329 789 rs28654325 Intron 10 
25 329 839 rs28668998 Intron 10 
*

From the database of SNPs.44 

Not applicable. Not found in the database of SNPs.44 

SNP position shows 3 different nucleotides: T for reference (hg38); G for R1, R0, RZ haplotypes; and A for R2 haplotype.

RHD reference sequences

We have established a methodology to fully sequence the RHD gene including promotor, introns, and all exons that can be used to study the different RHD alleles in the population to establish reference RHD allele sequences. We sequenced hemizygous (1 copy) RHD genes in samples that were confirmed to be hemizygous RHD samples by dPCR, and compared those sequences with homozygous (2 copy) RHD genes in samples confirmed as homozygous RHD by dPCR.

Two RHD reference sequences were submitted to GenBank and registered with accession numbers MG944308 and MG944309 for the R1, R0, RZ haplotypes and the R2 haplotype, respectively. We are additionally working on establishing the method for fully sequencing the homologous RHCE gene. In many cases when serology fails to determine an RhD variant and other platforms cannot detect the RHD allele, follow-up work would only require RHD sequencing to determine the exact nucleotide changes and the RHCE gene sequencing would not be needed.

The RHD gene was fully sequenced on the Ion PGM through LR-PCR amplification. Although LR-PCR is an efficient technique in amplifying the gene for sequencing, the LR-PCR approach is limited. Hybrid RHD-RHCE alleles or partial D alleles may not amplify if a primer position is compromised by deletion or mutations. The RHD-specific primers in the current study were subsequently tested with different weak and partial D samples including: RHD*DVI.01, RHD*DNB, RHD*DIV.04, RHD*DVII.01, DFR1, DFR2, and RHD*DIIIa (data not shown). Amplification for all 6 PCR amplicons was achieved in all samples except for samples with the RHD*DVI.01 allele, in which amplicon 4 did not amplify successfully (data not shown). This issue could be resolved in the future using a hybrid primer approach, for example, an RHD-specific forward primer and an RHCE-specific reverse primer.

Data analysis revealed 3 exonic SNPs that encode 3 RHD alleles, which include RHD*01W.1, RHD*01W.02, and RHD*01W.3. Weak D type 1 RHD*01W.1 was detected in 14 samples with R1 haplotype, whereas weak D type 2 RHD*01W.02 was found in 12 R2 haplotype samples. These results support the hypothesis that different weak D alleles are linked to a specific haplotype, in which weak D type 1 is linked to the R1 (DCe) haplotype, and weak D type 2 is linked to the R2 (DcE) haplotype.45  One R1r (DCe/dce) sample (004_28) was genotyped by NGS as weak D type 3 (RHD*01.03), which is linked to R1 haplotype.45 

Rh haplotype-specific SNPs

Analyzing intronic SNPs (Table 7) revealed 21 homozygous SNPs (Table 4) present in all samples sequenced. These represent SNP variants of the RHD*DAU0 (RHD*10.00) allele, which the hg38 reference sequence encodes. Some intronic SNPs were found to be present in a specific haplotype (R2), 23 SNPs were homozygous in all R2r, R2R2 and in 3 of the 6 R1R2 samples that tested as hemizygous by dPCR (Table 5). They were also detected as heterozygous SNPs in all R1R2 samples tested as homozygous by dPCR and in the R2RZ sample. Homozygous intronic mutations were detected in all R1R1, R1r, and in the other 3 of the 6 R1R2 samples tested as hemizygous in dPCR (Table 6). These SNPs were also present in 6 R0r samples, and detected as heterozygous SNPs in 6 R1R2 samples tested as homozygous by dPCR and in the R2RZ sample. The similarities of the intronic SNPs pattern between different haplotypes (R1, R0, and RZ) suggest that these haplotypes might have risen from the same ancestral gene. There were no intronic SNPs specific to each of the R1, R0, or RZ alleles.

RHAG NGS

Two samples (004_14 and 004_69) were serologically phenotyped as weak D; however, no amino acid changes were predicted from sequencing of the RHD gene. Different mutations in the RHAG gene (ISBT030) have been reported that disturb the expression of the Rh proteins.36-38  Therefore, we sequenced the RHAG gene for these samples (004_14 and 004_69) that showed weak D reactivity without finding any alterations in the RHD gene. Sample (004_14) showed a SNP 808G>A in exon 6 of the RHAG gene leading to Val270Ile that encodes the RHAG*04 allele. In this sample, this mutation could be the main cause for the weak D reactivity, hence no changes were detected from the sequencing of the RHD gene in this sample to explain the weak D reactivity.

dPCR discrepant results characterized by RHD NGS

dPCR was used to test for 2 targets in the RHD gene against the reference gene AGO1 on chromosome 1. dPCR has demonstrated high sensitivity when used as a detection method for RHD genotyping.12,39  All samples included in this cohort demonstrated compatible zygosity results with the serologically predicted genotype except for 9 samples. Eight samples showed incompatible results with the predicted genotype by serological testing; they include: 1 R1r sample (004_14), which showed the presence of a homozygous RHD gene; 6 R1R2 samples (004_35, 004_36, 004_37, 004_38, 004_39, 004_40), which showed the presence of a hemizygous RHD gene; and 1 R2R2 sample (004_42), which showed as hemizygous for the RHD gene (Table 3). One R1R1 sample (004_07) showed a discrepancy between the RHD5 and RHD7 results. Sample (004_07) presented a ratio of 0.54 for RHD5 against the reference gene AGO1, indicating a hemizygous result; a ratio of 1.0 for RHD7 against the reference gene AGO1 indicated a homozygous result. This discrepancy between hemizygous RHD5 and homozygous RHD7 means that 1 of the RHD alleles has a deletion in exon 5. This gene deletion could not be detected through the NGS due to the presence of a wild-type copy of the other RHD allele masking the probable failed amplification of the variant allele.

The 6 R1R2 (DCe/DcE) samples, which showed only 1 copy of the RHD gene (hemizygous), had their genotypes predicted by serology findings based on the probability of the gene in the population, but in these cases the genotypes are in fact less frequent or occurring with a lower probability. These samples are expected to be either R1r′′ (DCe/dcE), RZr (DCE/dce), R2r′ (DcE/dCe), or R0ry (Dce/dCE) from zygosity information, which all could be inappropriately assigned by serology as R1R2 (DCe/DcE) due to gene frequencies in the population. Three of the R1R2 (004_35, 004_36, 004_37) samples have the intronic SNPs suspected to be linked to the R2 haplotype and are missing all the other intronic SNPs that are linked to the R1, R0, RZ haplotypes. Sample 004_35 was genotyped as weak D type 2, and due to the link between the R2 haplotype and weak D type 2, this sample could only be R2r′ (DcE/dCe). The other 2 samples could also be genotyped as R2r′ (DcE/dCe) as inferred by their intronic SNP pattern. The correct genotype of the other 3 hemizygous R1R2 samples (004_38, 004_39, 004_40) missing the R2-specific SNPs could be either R1r″ (DCe/dcE), RZr (DCE/dce), or R0ry (Dce/dCE). Considering the frequency of these alleles46  in the population, in which R1r″ is 1%, RZr is 0.19%, and R0ry is <0.01%, it is very likely for these samples to be R1r″ (DCe/dcE). Based on our zygosity results, the frequency of R1r″ seems to be higher than anticipated46  in the population. Definitive genotypes for these samples could be confirmed by sequencing the RHCE gene, in addition to the RHD gene, and hence only having the RHD gene sequencing to date is a limitation of this study. In ongoing work to sequence the RHCE gene, multiple primer sets have been designed to amplify the gene in LR-PCR amplicons but the regions surrounding introns 2 and 8 of the RHCE gene are problematic. We have sequenced 35 samples for the RHCE gene (data not shown) that had poor depth of coverage for amplicons covering introns 2 and 8, which has made data analysis and variant calling from these regions challenging. Successful and robust sequencing of the RHCE gene would add to the data set and aid identification of particular alleles in samples. It will also be of interest to sequence the RHCE gene in samples lacking the RHD gene, for example, rr (dce/dce) samples.

The R1r (004_14) sample that was homozygous RHD by dPCR showed R1/R0/RZ-related SNPs and was missing all R2-related SNPs, suggesting that the correct genotype could be R1R0 (DCe/Dce). The hemizygous R2R2 sample (004_42) was genotyped as weak D type 2 and showed R2-specific SNPs, therefore, its correct genotype could only be R2r″ (DcE/dcE).

We sequenced the RHD gene in 69 samples using NGS to study RHD mutations, assessed variations present in the population and identified reference RHD allele sequences (Table 7). Intronic SNPs were used to determine their relation to specific haplotypes. We found that 21 intronic SNPs were present in all samples indicating their specificity to the RHD*DAU0 (RHD*10.00) haplotype, which the hg38 reference sequence encodes. Twenty-three intronic SNPs were found to be R2 specific, and 15 were related to R1, R0, and RZ haplotypes. In future work, we aim to identify the pattern of intronic SNPs in the RHCE gene. Intronic SNPs may represent a novel diagnostic approach to investigate known and novel variants of the RHD and RHCE genes.

The authors thank Michele Kiernan of the University of Plymouth Systems Biology Centre (Plymouth, United Kingdom) for carrying out the sequencing run and for support and assistance in this work. The authors thank Amr Halawani of Jazan University, Jazan, Saudi Arabia (formerly based at the University of Plymouth, Plymouth, United Kingdom), for training in NGS library preparation and bioinformatics.

This work was supported by King Abdulaziz University (Jeddah, Saudi Arabia).

Contribution: W.A.T. performed experiments, analyzed data, and wrote the manuscript; and T.E.M. and N.D.A. supervised the study and revised the manuscript.

Conflict-of-interest disclosure: A patent relating to the Rh specificity of the intronic polymorphisms identified in this study has been filed (P120661GB) (T.E.M. and N.D.A.). The laboratory also received funding from Biofortuna for aspects of blood-group genotyping and next-generation sequencing work. N.D.A. was an expert witness for Premaitha in their UK high-court case, Premaitha vs Illumina, July 2017, relating to noninvasive prenatal diagnosis. W.A.T. declares no competing financial interests.

Correspondence: Tracey E. Madgett, School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL4 8AA, United Kingdom; e-mail: tracey.madgett@plymouth.ac.uk.

1.
Avent
ND
,
Reid
ME
.
The Rh blood group system: a review
.
Blood
.
2000
;
95
(
2
):
375
-
387
.
2.
Avent
ND
,
Madgett
TE
,
Lee
ZE
,
Head
DJ
,
Maddocks
DG
,
Skinner
LH
.
Molecular biology of Rh proteins and relevance to molecular medicine
.
Expert Rev Mol Med
.
2006
;
8
(
13
):
1
-
20
.
3.
Colin
Y
,
Chérif-Zahar
B
,
Le Van Kim
C
,
Raynal
V
,
Van Huffel
V
,
Cartron
JP
.
Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis
.
Blood
.
1991
;
78
(
10
):
2747
-
2752
.
4.
Wagner
FF
,
Flegel
WA
.
RHD gene deletion occurred in the Rhesus box
.
Blood
.
2000
;
95
(
12
):
3662
-
3668
.
5.
Le van Kim
C
,
Mouro
I
,
Chérif-Zahar
B
, et al
.
Molecular cloning and primary structure of the human blood group RhD polypeptide
.
Proc Natl Acad Sci USA
.
1992
;
89
(
22
):
10925
-
10929
.
6.
Okuda
H
,
Kajii
E
.
The evolution and formation of RH genes
.
Leg Med (Tokyo)
.
2002
;
4
(
3
):
139
-
155
.
7.
Carritt
B
,
Kemp
TJ
,
Poulter
M
.
Evolution of the human RH (rhesus) blood group genes: a 50 year old prediction (partially) fulfilled
.
Hum Mol Genet
.
1997
;
6
(
6
):
843
-
850
.
8.
Okuda
H
,
Suganuma
H
,
Kamesaki
T
, et al
.
The analysis of nucleotide substitutions, gaps, and recombination events between RHD and RHCE genes through complete sequencing
.
Biochem Biophys Res Commun
.
2000
;
274
(
3
):
670
-
683
.
9.
Noizat-Pirenne
F
,
Mouro
I
,
Gane
P
, et al
.
Heterogeneity of blood group RhE variants revealed by serological analysis and molecular alteration of the RHCE gene and transcript
.
Br J Haematol
.
1998
;
103
(
2
):
429
-
436
.
10.
Orzińska
A
,
Guz
K
,
Mikula
M
, et al
.
A preliminary evaluation of next-generation sequencing as a screening tool for targeted genotyping of erythrocyte and platelet antigens in blood donors
.
Blood Transfus
.
2018
;
16
(
3
):
285
-
292
.
11.
Jungbauer
C
.
Blood group molecular genotyping
.
ISBT Sci Ser
.
2011
;
6
(
2
):
399
-
403
.
12.
Sillence
KA
,
Halawani
AJ
,
Tounsi
WA
, et al
.
Rapid RHD zygosity determination using digital PCR
.
Clin Chem
.
2017
;
63
(
8
):
1388
-
1397
.
13.
Fichou
Y
,
Audrézet
MP
,
Guéguen
P
,
Le Maréchal
C
,
Férec
C
.
Next-generation sequencing is a credible strategy for blood group genotyping
.
Br J Haematol
.
2014
;
167
(
4
):
554
-
562
.
14.
Fichou
Y
,
Férec
C
.
NGS and blood group systems: state of the art and perspectives
.
Transfus Clin Biol
.
2017
;
24
(
3
):
240
-
244
.
15.
Goldman
M
,
Núria
N
,
Castilho
LM
.
An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system
.
Immunohematology
.
2015
;
31
(
2
):
62
-
68
.
16.
Hashmi
G
,
Shariff
T
,
Seul
M
, et al
.
A flexible array format for large-scale, rapid blood group DNA typing
.
Transfusion
.
2005
;
45
(
5
):
680
-
688
.
17.
Beiboer
SH
,
Wieringa-Jelsma
T
,
Maaskant-Van Wijk
PA
, et al
.
Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization
.
Transfusion
.
2005
;
45
(
5
):
667
-
679
.
18.
Denomme
GA
,
Van Oene
M
.
High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes
.
Transfusion
.
2005
;
45
(
5
):
660
-
666
.
19.
Avent
ND
,
Martinez
A
,
Flegel
WA
, et al
.
The Bloodgen Project of the European Union, 2003-2009
.
Transfus Med Hemother
.
2009
;
36
(
3
):
162
-
167
.
20.
Avent
ND
,
Madgett
TE
,
Halawani
AJ
, et al
.
Next generation sequencing: academic overkill or high resolution routine blood group genotyping
.
ISBT Sci Ser
.
2015
;
10
(
suppl 1
):
250
-
256
.
21.
Lane
WJ
,
Westhoff
CM
,
Uy
JM
, et al
;
MedSeq Project
.
Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle
.
Transfusion
.
2016
;
56
(
3
):
743
-
754
.
22.
Pareek
CS
,
Smoczynski
R
,
Tretyn
A
.
Sequencing technologies and genome sequencing
.
J Appl Genet
.
2011
;
52
(
4
):
413
-
435
.
23.
Tilley
L
,
Grimsley
S
.
Is next generation sequencing the future of blood group testing?
Transfus Apheresis Sci
.
2014
;
50
(
2
):
183
-
188
.
24.
Zhang
J
,
Chiodini
R
,
Badr
A
,
Zhang
G
.
The impact of next-generation sequencing on genomics
.
J Genet Genomics
.
2011
;
38
(
3
):
95
-
109
.
25.
Profaizer
T
,
Lázár-Molnár
E
,
Close
DW
,
Delgado
JC
,
Kumánovics
A
.
HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods
.
HLA
.
2016
;
88
(
1-2
):
14
-
24
.
26.
Möller
M
,
Jöud
M
,
Storry
JR
,
Olsson
ML
.
Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project
.
Blood Adv
.
2016
;
1
(
3
):
240
-
249
.
27.
Dezan
MR
,
Ribeiro
IH
,
Oliveira
VB
, et al
.
RHD and RHCE genotyping by next-generation sequencing is an effective strategy to identify molecular variants within sickle cell disease patients
.
Blood Cells Mol Dis
.
2017
;
65
:
8
-
15
.
28.
Fichou
Y
,
Mariez
M
,
Le Maréchal
C
,
Férec
C
.
The experience of extended blood group genotyping by next-generation sequencing (NGS): investigation of patients with sickle-cell disease
.
Vox Sang
.
2016
;
111
(
4
):
418
-
424
.
29.
Bakanay
SM
,
Ozturk
A
,
Ileri
T
, et al
.
Blood group genotyping in multi-transfused patients
.
Transfus Apheresis Sci
.
2013
;
48
(
2
):
257
-
261
.
30.
Chou
ST
,
Flanagan
JM
,
Vege
S
, et al
.
Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia
.
Blood Adv
.
2017
;
1
(
18
):
1414
-
1422
.
31.
Ribeiro
KR
,
Guarnieri
MH
,
da Costa
DC
,
Costa
FF
,
Pellegrino
J
Jr
,
Castilho
L
.
DNA array analysis for red blood cell antigens facilitates the transfusion support with antigen-matched blood in patients with sickle cell disease
.
Vox Sang
.
2009
;
97
(
2
):
147
-
152
.
32.
Stabentheiner
S
,
Danzer
M
,
Niklas
N
, et al
.
Overcoming methodical limits of standard RHD genotyping by next-generation sequencing
.
Vox Sang
.
2011
;
100
(
4
):
381
-
388
.
33.
Flegel
WA
,
Gottschall
JL
,
Denomme
GA
.
Integration of red cell genotyping into the blood supply chain: a population-based study
.
Lancet Haematol
.
2015
;
2
(
7
):
e282
-
e289
.
34.
Schoeman
EM
,
Roulis
EV
,
Liew
YW
, et al
.
Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting
.
Transfusion
. 2018;58(2):284-293.
35.
Hyland
CA
,
Millard
GM
,
O’Brien
H
, et al
.
Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types
.
Pathology
.
2017
;
49
(
7
):
757
-
764
.
36.
Polin
H
,
Pelc-Klopotowska
M
,
Danzer
M
, et al
.
Compound heterozygosity of two novel RHAG alleles leads to a considerable disruption of the Rh complex
.
Transfusion
.
2016
;
56
(
4
):
950
-
955
.
37.
Wen
J
,
Verhagen
O
,
Jua
S
, et al
. Identification of a RHAG*(R191Q) allele associated with a weak RHD and normal RHCE phenotype. Paper presented at the 28th ISBT Regional Congress. 28 November 2017. Guangzhou, China.
38.
Mu
S
,
Cui
Y
,
Wang
W
, et al
.
A RHAG point mutation selectively disrupts Rh antigen expression [published online ahead of print 6 March 2018]
.
Transfus Med
. doi:10.1111/tme.12519.
39.
Sillence
KA
,
Roberts
LA
,
Hollands
HJ
, et al
.
Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR
.
Clin Chem
.
2015
;
61
(
11
):
1399
-
1407
.
40.
Untergasser
A
,
Cutcutache
I
,
Koressaar
T
, et al
.
Primer3—new capabilities and interfaces
.
Nucleic Acids Res
.
2012
;
40
(
15
):
e115
.
41.
National Library of Medicine, National Center for Biotechnology Information
. Primer-blast. Available at: https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Accessed 5 January 2016.
42.
National Library of Medicine, National Center for Biotechnology Information
. Homo sapiens RHD gene (RHD). Accession no. 540 NC_000001.11. Available at: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.37. Accessed 25 September 2016.
43.
Nielsen
R
,
Paul
JS
,
Albrechtsen
A
,
Song
YS
.
Genotype and SNP calling from next-generation sequencing data
.
Nat Rev Genet
.
2011
;
12
(
6
):
443
-
451
.
44.
National Library of Medicine, National Center for Biotechnology Information
. Database of single nucleotide polymorphisms (SNPs). Available at: https://www.ncbi.nlm.nih.gov/snp/?term=. Accessed 10 October 2016.
45.
Wagner
FF
,
Gassner
C
,
Müller
TH
,
Schönitzer
D
,
Schunter
F
,
Flegel
WA
.
Molecular basis of weak D phenotypes
.
Blood
.
1999
;
93
(
1
):
385
-
393
.
46.
Daniels
G
.
Rh and RHAG blood group systems
. In:
Daniels
G
, ed.
Human Blood Groups
. 3rd ed.
Oxford, United Kingdom
:
Wiley-Blackwell
;
2013
:
185
.