Complete *RHD* next-generation sequencing: establishment of reference *RHD* alleles

Wajnat A. Tounsi,^{1,2} Tracey E. Madgett,¹ and Neil D. Avent¹

¹Faculty of Medicine and Dentistry, School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom; and ²School of Medical Technology, King Abdulaziz University, Jeddah, Saudi Arabia

Key Points

- We have used LR-PCR and NGS to completely sequence *RHD* genes in a variety of blood donors.
- The results show correlation between intronic SNPs and common Rh haplotypes, thus establishing reference alleles.

The Rh blood group system (ISBT004) is the second most important blood group after ABO and is the most polymorphic one, with 55 antigens encoded by 2 genes, RHD and RHCE. This research uses next-generation sequencing (NGS) to sequence the complete RHD gene by amplifying the whole gene using overlapping long-range polymerase chain reaction (LR-PCR) amplicons. The aim was to study different *RHD* alleles present in the population to establish reference RHD allele sequences by using the analysis of intronic single-nucleotide polymorphisms (SNPs) and their correlation to a specific Rh haplotype. Genomic DNA samples (n = 69) from blood donors of different serologically predicted genotypes including R₁R₁ (DCe/DCe), R₂R₂ (DCE/DCE), R₁R₂ (DCe/DCE), R₂R₇ (DCE/DCE), R₁r (DCe/dce), R₂r (DCE/dce), and R_0r (Dce/dce) were sequenced and data were then mapped to the human genome reference sequence hg38. We focused on the analysis of hemizygous samples, as these by definition will only have a single copy of *RHD*. For the 69 samples sequenced, different exonic SNPs were detected that correlate with known variants. Multiple intronic SNPs were found in all samples: 21 intronic SNPs were present in all samples indicating their specificity to the RHD*DAU0 (RHD*10.00) haplotype which the hg38 reference sequence encodes. Twenty-three intronic SNPs were found to be R₂ haplotype specific, and 15 were linked to R_1 , R_0 , and R_Z haplotypes. In conclusion, intronic SNPs may represent a novel diagnostic approach to investigate known and novel variants of the *RHD* and *RHCE* genes, while being a useful approach to establish reference RHD allele sequences.

Introduction

The Rh blood group system (ISBT004) is the second most important blood group after ABO^{1,2} and one of the most polymorphic blood group systems. The *RHD* and the *RHCE* genes are located on chromosome 1 (1p33.1_1p36) and encode the RhD protein and the RhCcEe protein, respectively.^{3,4} The D antigen is the most clinically significant antigen in the Rh system due to its high immunogenicity and to being the main cause of hemolytic disease of the fetus and newborn (HDFN).⁵ The *RHD* and the *RHCE* genes show 93.8% homology in their introns and coding exons.⁶ The similarities between these 2 genes give an indication to their evolutionary rise from the same ancestral gene through duplication.⁶⁻⁸ Recombination, deletion, and point mutations in these 2 genes generate the 8 most common Rh haplotypes, which include: R₁ (DCe), R₂ (DCE), R₀ (Dce), R_z (DCE), r (dce), r^y (dCE), r' (dCe), and r'' (dcE).⁹

Serological testing is fast, cost-friendly, and efficient; however, it is limited by many factors: for instance, the availability of antisera,^{10,11} reactivity of the antibodies, and antigen status (like weak or partial expression). Current assignment of a partial or a weak D phenotype would require an extensive collection of monoclonal anti-D. Monoclonals to low-frequency Rh antigens to identify specific partial

Submitted 23 February 2018; accepted 13 September 2018. DOI 10.1182/ bloodadvances.2018017871.

Primer name	Sequence 5'-3'	Exons	Size, bp	Annealing temperature, °C
RHD-1 forward	ATCCACTTTCCACCTCCCTGC	1	10 326	62
RHD-1 reverse	TCTTTGCACTTCTTCTGACAACA			
RHD-2 forward	CTGGGAGAGTGAAGCTGGGTGTGA	2, 3	13 709	62
RHD-2 reverse	TTCATACACATCTCTACCCCCCTC			
RHD-3 forward	GTTTGAGCCCAGGAGTTAGGGACCGAG	4	10 789	66
RHD-3 reverse	CCCACTGTGACCACCCAGCATTCTA			
RHD-4 forward	CATACCTTTGAATTAAGCACTTCAC	5, 6, 7	9 895	66
RHD-4 reverse	CAGAATGGCCTTTACCAGCCAT			
RHD-5 forward	GTTCAAGCTGTCAAGGAGACATCACTATACA	8	11 628	65
RHD-5 reverse	CCAGTTTTAAGAATTTGTCGGCCGGTCG			
RHD-6 forward	ATACATTCCATCCAGAACTGTTCACC	9, 10	11 284	64
RHD-6 reverse	AGGCCAAGAGATCCTGGTGAAACTATCC			

D phenotypes are unavailable. Serological testing also leads to prediction of the Rh genotype based on the most common haplotype present in the population, which, for some cases, is incorrect.¹²

Unlike serological testing, genotyping provides the freedom to analyze a wider range of blood antigens including low-frequency antigens, for instance: Go^a, BARC, and Tar which can cause HDFN and alloimmunization.¹ Complete blood group genotyping (BGG) could be widely used in transfusion practice where serology fails to clarify issues or resolve discrepancies. Extensive efforts have been made to alternatively use molecular genotyping ranging from low to high throughput.¹³ Different DNA microarray-based tests were introduced that enable genotyping of variant blood groups by targeting specific single-nucleotide polymorphisms (SNPs).14-19 Although these assays are very accurate, they have limitations. They are designed to target predefined nucleotides or DNA regions through polymerase chain reaction (PCR), whereas novel variants remain unknown.^{13,20} Complete DNA sequencing could be the most effective technique to thoroughly study blood group variations and overcome limitations in other assays.^{20,21}

Since it was introduced in 2005, next-generation sequencing (NGS) has greatly impacted the genetic research field by elevating both throughput and data generated, and at the same time lowering significantly the cost of sequencing per nucleotide.^{13,14,22-24} NGS is used in HLA testing,²⁵ which creates a strong impetus to introduce NGS for BGG.²⁶ Genotyping could be used to genotype blood transfusion–dependent patients who are at risk of alloimmunization.²⁷⁻³⁰ It could be used to genotype donors and create a database that would make finding and recall of compatible donors for transfusion easier.^{14,31-33} For these databases, reference sequences for all blood group genes are critical to allow effective BGG.²⁶

Different studies have aimed to use NGS in BGG using a variety of approaches. Dezan et al,²⁷ Chou et al,³⁰ and Schoeman et al³⁴ used exome sequencing to identify Rh variants but the high similarity between the *RHD* and *RHCE* genes makes it challenging to analyze data, especially in exons 8 and 10 where there are no differences between the 2 genes. Hyland et al³⁵ used long-range PCR (LR-PCR) to amplify the *RHD* gene from exon 2 to exon 7 but omitted exons 1, 8, 9, and 10. We aimed to use LR-PCR to amplify

the complete gene to get a full *RHD* sequence including promoter, introns, and all exons. The aim was to achieve full *RHD* sequencing to provide utility for *RHD* variant detection, with a follow-up in the future of full *RHCE* sequencing.

Rh-associated glycoprotein gene (*RHAG*; ISBT030) mutations have been linked to disturbed RhD expression.³⁶⁻³⁸ Therefore, we also aimed to sequence the *RHAG* gene for samples that showed weak D reactivity by serology and where no mutations in the *RHD* gene were detected.

All samples collected in our study were tested for *RHD* zygosity using droplet digital PCR (dPCR) to allow us to use a large number of hemizygous *RHD* samples to unequivocally establish reference alleles for the *RHD* gene. By studying intronic SNPs and their relationship to specific Rh haplotypes, it is clear that there is a significant difference between the R_2 haplotype and other haplotypes.

Materials and methods

Sample collection and processing

Donor blood samples (n = 123) were supplied in EDTA tubes by the National Health Service Blood and Transplant (NHSBT; Bristol, United Kingdom). Inclusion criteria for blood samples was either their Rh haplotype (R₁, R₂, R₀, R_z; n = 95) or by their D reactivity (weak D; n = 28). Samples were serologically phenotyped for ABO, Rh, and other blood groups by the NHSBT and were properly consented, anonymized, and supplied with full ethical approval. Blood tubes were centrifuged at 2500*g* for 10 minutes at room temperature. Plasma on the top layer was carefully disposed and buffy coat was collected into a 1.5-mL tube; the remaining content was discarded.

Genomic DNA extraction and zygosity testing

Genomic DNA (gDNA) was extracted from buffy coat using the QIAamp DNA Blood Mini kit (Qiagen Ltd) following the manufacturer's guidelines. gDNA concentration was determined on the Qubit 2.0 Fluorometer (Life Technologies) using the Qubit double-stranded DNA High Sensitivity assay kit (Life Technologies). gDNA was finally stored at -20° C. Samples were tested for zygosity with the aim of knowing the number of *RHD* alleles present for subsequent sequence analysis. The *RHD* zygosity was determined for all samples using dPCR to determine whether a sample was

Figure 1. The *RHD* and *RHAG* genes amplified in overlapping LR-PCR amplicons. (A) Six overlapping *RHD* LR-PCR amplicons. (B) Three overlapping *RHAG* LR-PCR amplicons.

hemizygous (Dd) or homozygous (DD).^{12,39} Samples were tested for *RHD* exon 5 (*RHD5*) and *RHD* exon 7 (*RHD7*) against the reference gene *AGO1* on chromosome 1.^{12,39} The droplet reader in combination with QuantaSoft software v1.7.4 analyzed the droplet signals and differentiated between negative and positive ones, creating an absolute concentration of DNA. The number of *RHD* copies per microliter present in a sample was compared with the reference gene *AGO1* copies per microliter.

Primer design

Six sets of primers (Table 1) were designed using the Primer3 software⁴⁰ and CLC Main Workbench 9 software (Qiagen Ltd) to amplify the *RHD* gene in 6 LR-PCR amplicons (Figure 1), with ~1 kb overlap between each of them. To eliminate amplification from the *RHCE* gene, primers were designed around intronic differences between the *RHD* and the *RHCE* genes positioned at the 3' end to create *RHD*-specific primers. Even though exons 8 and 10 for the *RHD* and the *RHCE* genes are identical, there are intronic differences between the 2 genes that have been used to create *RHD*-specific primers. To ensure primer specificity, primers were assessed using Primer-BLAST on the National Center for Biotechnology Information (NCBI) website.⁴¹ In a similar manner, 3 sets of primers (Table 2) were designed to amplify the *RHAG* gene in 3 amplicons. The primers were ordered in a high-performance liquid chromatography purified form from Eurofins Genomics.

LR-PCR optimization

To optimize PCR conditions, different annealing temperatures and primer concentrations were tested to ensure specific amplification from the target gene. In a 50- μ L reaction, 1× master mix of LongAmp

Hot Start Taq 2× Master Mix (New England Biolabs) was used with 200 ng of gDNA template; 1 μ M of the forward and reverse primers was used for all amplicons except for *RHD* amplicon 3, where 0.2 μ M of the forward and reverse primers was used. The Veriti Thermal Cycler (Applied Biosystems) program was set as follows: denaturation at 95°C for 5 minutes, 30 cycles of 95°C for 30 seconds, annealing for 30 seconds, and extension at 65°C for 10 minutes. Annealing temperature varied for each primer set (Tables 1 and 2). The last extension was at 65°C for 10 minutes; finally, samples were held at 4°C. To validate PCR amplification, PCR products were run on a 0.7% wt/vol agarose gel in 1× Tris-acetate-EDTA buffer next to a Quick-Load 1-kb Extend DNA Ladder (New England Biolabs).

Library construction, NGS, and data analysis

The LR-PCR products were purified using the Agencourt AMPure XP (Beckman Coulter). Purified amplicons were then quantified using Qubit double-stranded DNA High Sensitivity assay kit (Life Technologies) to create an equimolar pool to ensure an equal depth of coverage across the gene. Pooled amplicons were fragmented using the lon Xpress Plus Fragment Library Kit (Life Technologies) to create a 200-base-read library and ligated to adaptors using the lon Xpress Barcode Adapters kit (Life Technologies) following the manufacturer's protocol. Size selection and library enrichment were carried out as by Sillence et al.¹² The enriched library was then sequenced using the lon Torrent PGM on a 316 chip.

Data (FASTQ) were analyzed using CLC Main Workbench 9 software (Qiagen Ltd). Short reads were aligned to the human reference sequence hg38 downloaded from the NCBI database.⁴² The *RHCE*

Table 2. Sequence, exons covered, product sizes, and annealing temperature for primers used for RHAG LR-PCR

Primer name	Sequence 5'-3'	Exons	Size, bp	Annealing temperature, °C
RHAG-1 forward	TGGTAGGGCTGATTTCCTTGT	6, 7, 8, 9, 10	10 003	62
RHAG-1 reverse	TGGATGTTTTGGCCCAGCTT			
RHAG-2 forward	GCTGATCTGAGGGTTACTCCTTT	2, 3, 4, 5	10519	62
RHAG-2 reverse	AGGAGGATGGGAACGCTAAG			
RHAG-3 forward	AATTATTCTGCAGATTTCACCCC	1	15083	62
RHAG-3 reverse	GGAGACAAGAATTCCTCCACCTAT			

Sample no.	Rh serology*	Ethnicity*	RHD5-to-AGO1 ratio	RHD7-to-AGO1 ratio	dPCR RHD zygosity	Allele
004_01	R ₁ R ₁	Caucasian	1.12	1.05	Homozygous	RHD*01
004_02	R_1R_1	Caucasian	1.12	1.03	Homozygous	RHD*01
004_03	R_1R_1	Other	1.01	1.04	Homozygous	RHD*01
004_04	R_1R_1	Caucasian	1.07	1.03	Homozygous	RHD*01
004_05	R ₁ R ₁	Caucasian	1.01	1.06	Homozygous	RHD*01
004_06	R_1R_1	Caucasian	0.99	1.04	Homozygous	RHD*01
004_07	R ₁ R ₁	Caucasian	0.54	1.01	Discrepancy [†]	RHD*01W.01
004_08	R ₁ r	Caucasian	0.54	0.57	Hemizygous	RHD*01
004_09	R ₁ r	Caucasian	0.54	0.53	Hemizygous	RHD*01
004_10	R ₁ r	Chinese	0.51	0.56	Hemizygous	RHD*01
004_11	R ₁ r	Caucasian	0.53	0.54	Hemizygous	RHD*01
004_12	R ₁ r	Caucasian	0.55	0.52	Hemizygous	RHD*01
004_13	R ₁ r	Caucasian	0.54	0.6	Hemizygous	RHD*01
004_14	R ₁ r	Caucasian	1.06	0.99	Homozygous‡	RHD*01
004_15	R ₁ r	Caucasian	0.53	0.50	Hemizygous	RHD*01W.01
004_16	R ₁ r	Caucasian	0.54	0.52	Hemizygous	RHD*01W.01
004_17	R ₁ r	Caucasian	0.58	0.56	Hemizygous	RHD*01W.01
004_18	R ₁ r	Caucasian	0.54	0.52	Hemizygous	RHD*01W.01
004_19	R ₁ r	Caucasian	0.54	0.47	Hemizygous	RHD*01W.01
004_20	R ₁ r	Caucasian	0.53	0.57	Hemizygous	RHD*01W.01
004_21	R ₁ r	Caucasian	0.52	0.57	Hemizygous	RHD*01W.01
004_22	R ₁ r	Caucasian	0.54	0.53	Hemizygous	RHD*01W.01
004_23	R ₁ r	Caucasian	0.52	0.53	Hemizygous	RHD*01W.01
004_24	R ₁ r	Caucasian	0.53	0.54	Hemizygous	RHD*01W.01
004_25	R ₁ r	Caucasian	0.53	0.51	Hemizygous	RHD*01W.01
004_26	R ₁ r	Caucasian	0.57	0.52	Hemizygous	RHD*01W.01
004_27	R ₁ r	Caucasian	0.56	0.54	Hemizygous	RHD*01W.01
004_28	R ₁ r	Caucasian	0.53	0.52	Hemizygous	RHD*01W.03
004_29	R_1R_2	Caucasian	1.09	1.03	Homozygous	RHD*01
004_30	R_1R_2	Caucasian	0.95	0.94	Homozygous	RHD*01
004_31	R_1R_2	Caucasian	1.08	1.05	Homozygous	RHD*01
004_32	R_1R_2	Caucasian	0.97	1.04	Homozygous	RHD*01
004_33	R_1R_2	Caucasian	1.03	1.08	Homozygous	RHD*01
004_34	R_1R_2	Caucasian	0.98	1.08	Homozygous	RHD*01
004_35	R ₁ R ₂	Caucasian	0.46	0.51	Hemizygous§	RHD*01W.02
004_36	R_1R_2	Caucasian	0.51	0.51	Hemizygous§	RHD*01
004_37	R ₁ R ₂	Caucasian	0.53	0.49	Hemizygous§	RHD*01
004_38	R ₁ R ₂	Caucasian	0.51	0.53	Hemizygous§	RHD*01
004_39	R ₁ R ₂	Caucasian	0.52	0.51	Hemizygous§	RHD*01
004_40	R ₁ R ₂	Caucasian	0.53	0.52	Hemizygous§	RHD*01

Table 3. Serologically predicted genotyp	e, ethnicity of donors,	dPCR <i>RHD</i> zygosity re	esults, and RHD allele as	s determined by NGS fo	or samples
sequenced (n = 69)					

The number of *RHD* copies per microliter present in a sample was compared with the reference gene *AGO1* copies per microliter. If a sample presented a ratio of 1, it was considered homozygous; it was considered hemizygous when present with a ratio of 0.5. Bold in the table body represents incompatible results between predicted genotype by serology and dPCR.

-, individual ethnicities not given.

*As supplied by the NHSBT, Bristol, United Kingdom.

+Sample shows discrepancy between hemizygous RHD5 and homozygous RHD7 meaning that 1 of the RHD alleles has a deletion in exon 5.

Eight samples show incompatible dPCR results with serologically predicted genotypes indicating incorrectly predicted genotypes by serology; these samples include:

 R_1 r sample shows the homozygous *RHD* gene.

 $6\ R_1R_2$ samples show the hemizygous $\it RHD$ gene.

 $||R_2R_2|$ sample shows the hemizygous *RHD* gene.

¶Average ratio.

Sample no.	Rh serology*	Ethnicity*	RHD5-to-AGO1 ratio	RHD7-to-AGO1 ratio	dPCR RHD zygosity	Allele
004_41	R_2R_2	Caucasian	1.01	0.99	Homozygous	RHD*01W.02
004_42	R_2R_2	Not disclosed	0.54	0.47	Hemizygous	RHD*01W.02
004_43	R_2R_2	Caucasian	1.01	1.02	Homozygous	RHD*01
004_44	R_2R_2	Caucasian	1.01	0.99	Homozygous	RHD*01
004_45	R_2R_2	Caucasian	1.03	1.02	Homozygous	RHD*01
004_46	R_2R_2	Caucasian	1.02	1.01	Homozygous	RHD*01
004_47	R_2R_2	Caucasian	1.01	1	Homozygous	RHD*01
004_48	R ₂ r	Caucasian	0.53	0.54	Hemizygous	RHD*01
004_49	R ₂ r	Caucasian	0.53	0.51	Hemizygous	RHD*01
004_50	R ₂ r	Caucasian	0.53	0.51	Hemizygous	RHD*01
004_51	R ₂ r	Caucasian	0.52	0.56	Hemizygous	RHD*01
004_52	R ₂ r	Caucasian	0.48	0.54	Hemizygous	RHD*01
004_53	R ₂ r	Caucasian	0.53	0.47	Hemizygous	RHD*01
004_54	R ₂ r	Caucasian	0.52	0.51	Hemizygous	RHD*01W.02
004_55	R ₂ r	Caucasian	0.53	0.52	Hemizygous	RHD*01W.02
004_56	R ₂ r	Caucasian	0.53	0.5	Hemizygous	RHD*01W.02
004_57	R ₂ r	Caucasian	0.51	0.57	Hemizygous	RHD*01W.02
004_58	R ₂ r	Caucasian	0.58	0.56	Hemizygous	RHD*01W.02
004_59	R ₂ r	Caucasian	0.51	0.53	Hemizygous	RHD*01W.02
004_60	R ₂ r	Caucasian	0.57	0.52	Hemizygous	RHD*01W.02
004_61	R ₂ r	Caucasian	0.55	0.53	Hemizygous	RHD*01W.02
004_62	R ₂ r	Caucasian	0.58	0.52	Hemizygous	RHD*01W.02
004_63	R _o r	Caucasian	0.46	0.46	Hemizygous	RHD*01
004_64	R _o r	Caucasian	0.5	0.53	Hemizygous	RHD*01
004_65	R _o r	Caucasian	0.46	0.49	Hemizygous	RHD*01
004_66	R _o r	Caucasian	0.49	0.52	Hemizygous	RHD*01
004_67	R _o r	Caucasian	0.53	0.51	Hemizygous	RHD*01
004_68	R _o r	Caucasian	0.52	0.51	Hemizygous	RHD*01
004_69	R_2R_Z	Caucasian	1.02	1.02	Homozygous	RHD*01
004_70- 004_123	R_1R_2	_	1.0¶	1.0¶	Homozygous	Not sequenced

The number of *RHD* copies per microliter present in a sample was compared with the reference gene *AGO1* copies per microliter. If a sample presented a ratio of 1, it was considered homozygous; it was considered hemizygous when present with a ratio of 0.5. Bold in the table body represents incompatible results between predicted genotype by serology and dPCR. —, individual ethnicities not given.

*As supplied by the NHSBT, Bristol, United Kingdom.

+Sample shows discrepancy between hemizygous RHD5 and homozygous RHD7 meaning that 1 of the RHD alleles has a deletion in exon 5.

Eight samples show incompatible dPCR results with serologically predicted genotypes indicating incorrectly predicted genotypes by serology; these samples include:

\$\$R1r sample shows the homozygous *RHD* gene.

§6 R1R2 samples show the hemizygous RHD gene

||R₂R₂ sample shows the hemizygous RHD gene.

Average ratio.

Table 3. (continued)

gene was masked in the *RHD* gene analysis by converting it into trimmed track to prevent reads from scattering. Variant detection was performed on a minimum coverage of 30 and variants detected were analyzed on a single-base basis considering different parameters including number and percentage of reads and nucleotide count.⁴³ The reference SNP number⁴⁴ was then found for each SNP detected.

Results

RHD zygosity

Samples (n = 123; Table 3) with different Rh genotypes presumed from serology results were first tested using dPCR to determine

RHD zygosity. The presence or absence of the *RHD* amplification on the dPCR platform was used to determine whether the samples were *RHD*⁻ or *RHD*⁺, respectively. Samples showing *RHD5* or *RHD7* to *AGO1* ratios close to 1 were determined to be homozygous *RHD*⁺ and samples with ratios close to 0.5 were classified as hemizygous *RHD*⁺ (Table 3). Samples included 7 R₁R₁ (DCe/DCe), 21 R₁r (DCe/dce), 7 R₂R₂ (DCE/DCE), 15 R₂r (DCE/dce), 66 R₁R₂ (DCe/ DCE), 6 R₀r (DCe/dce), and 1 R₂R₂ (DCE/DCE) as determined by serology. Zygosity results were compatible with the serologically predicted genotype except for the following samples. Sample (004_14), previously classified by serology as being phenotypically R₁r (DCe/dce), expressed ratios of 1.06 and 0.99 for the *RHD5* and RHD7 multiplex reactions, respectively (Table 3). This result contradicted previous serological classifications and indicated that the sample expressed 2 copies of the RHD gene. Sample (004_42), previously classified by serology as being phenotypically R_2R_2 , expressed ratios of 0.54 and 0.47 for the RHD5 and RHD7 multiplex reactions, respectively (Table 3). This result contradicted previous serological classifications and indicated that the sample expressed 1 copy of the RHD gene (hemizygous). In a similar manner, samples 004_35, 004_36, 004_37, 004_38, 004_39, and 004_40 were previously classified by serology as being phenotypically R1R2. However, given the ratios from the RHD5 (average 0.51) and RHD7 (average 0.51) multiplex reactions, these samples only express 1 copy of the RHD gene and are therefore classified as being RHD hemizygous. One R_1R_1 sample (004_07) showed discrepancy between hemizygous RHD5 (ratio 0.54) and homozygous RHD7 (ratio 1.01), indicating deletion of exon 5 in 1 of the RHD alleles.

NGS data

To establish reference *RHD* allele sequences, we aimed to sequence hemizygous *RHD* samples; nevertheless, *RHD* homozygous samples were also included in the sequence analysis to detect weak D that could be undetectable by serological testing due to the presence of a wild-type copy of the *RHD* allele. We purposely included the 6 R_1R_2 samples (004_35, 004_36, 004_37, 004_38, 004_39, 004_40) that tested as hemizygous for the *RHD* gene and included another set of 6 homozygous R_1R_2 samples (004_32, 004_34) for a comparison, which were randomly chosen from the remaining 60 homozygous R_1R_2 samples.

Samples (n = 69; Table 3) with different Rh serologically predicted genotypes were sequenced on the Ion PGM, including 7 R₁R₁ (DCe/DCe), 21 R₁r (DCe/dce), 7 R₂R₂ (DcE/DCE), 15 R₂r (DcE/dce), 12 R₁R₂ (DCe/DcE), 6 R₀r (Dce/dce), and 1 R₂R_z (DcE/DCE). Data were aligned to the hg38 reference sequence using CLC Workbench 9 software (Qiagen Ltd). It is noteworthy that the *RHD* reference sequence (NC_00001.11)⁴² is *RHD*DAU0* (*RHD*10.00*), presenting a SNP in exon 8 (1136C>T), causing amino acid change Thr379Met; therefore, all 69 samples presented a SNP in exon 8 (1136T>C) Met379Thr.

Three exonic SNPs and 519 intronic SNPs were detected across the 69 samples. Of the 28 samples that were serologically phenotyped as weak D, 26 of them were confirmed to be weak D by NGS and the *RHD* allele was determined. One R₁r sample (004_28) showed a SNP in exon 1 (8C>G) Ser3Cys that encodes weak D type 3 (*RHD*01W.3*). Thirteen R₁r samples (004_15, 004_16, 004_17, 004_18, 004_19, 004_20, 004_21, 004_22, 004_23, 004_24, 004_25, 004_26, 004_27) and 1 R₁R₁ sample (004_07) showed a SNP in exon 6, (809T>G) Val270Gly that encodes weak D type 1 (*RHD*01W.1*). Nine R₂r samples (004_54, 004_55, 004_56, 004_57, 004_58, 004_59, 004_60, 004_61, 004_62), 2 R₂R₂ samples (004_41, 004_42), and 1 R₁R₂ sample (004_35) showed the exon 9 (1154G>C) SNP that causes amino acid change Gly385Ala, which encodes weak D type 2 (*RHD*01W.02*).

One R₁r sample (004_14) and the R₂R_z (004_69) sample were serologically predicted to be weak D but no SNPs in the *RHD* gene causing amino acid changes in the RhD protein were detected by sequencing. For these 2 samples (004_14 and 004_69), the *RHAG* gene was sequenced to test whether there were any mutations in the *RHAG* gene that could be leading to weak D expression. One *RHAG* exon 6 mutation 808G>A was detected

Cable 4. Position of intronic variations and their reference SNP
number detected in all samples sequenced

Position	hg38 (<i>RHD*DAU0</i>)	All samples	Location	Reference SNP no.*
25 277 761	А	G	Intron 1	rs28661958
25 286 520	т	С	Intron 2	rs183024534
25 286 601	т	А	Intron 2	NA†
25 286 605	А	т	Intron 2	NA†
25 286 674	С	т	Intron 2	NA†
25 286 732	А	G	Intron 2	NA†
25 290 908	т	С	Intron 3	rs28521909
25 290 915	G	А	Intron 3	rs28562109
25 295 850	А	G	Intron 3	rs28451966
25 297 140	G	А	Intron 3	rs28786680
25 305 164	G	т	Intron 6	rs28703207
25 308 306	т	С	Intron 7	rs28374144
25 308 317	т	С	Intron 7	rs28719684
25 308 325	G	А	Intron 7	rs71493569
25 308 326	С	т	Intron 7	rs71493569
25 308 403	С	т	Intron 7	rs1801096
25 316 058	А	G	Intron 7	rs28453868
25 319 292	т	С	Intron 8	rs28397158
25 322 588	А	G	Intron 9	rs28435180
25 327 036	G	А	Intron 9	rs61777612
25 329 789	А	G	Intron 10	rs28654325

As the reference sequence is RHD*DAU0 (RHD*10.00), these nucleotide changes are predicted to be RHD*DAU0 (RHD*10.00) specific.

*From the database of SNPs.44

†Not applicable. Not found in the database of SNPs.44

in sample (004_14), causing the Val270lle change that encodes for the $RHAG^*04$ allele. Sample (004_69) showed a wild-type $RHAG^*01$ allele predicting no amino acid changes.

Intronic SNPs

Due to *RHD*DAU0 (RHD*10.00)* being the reference sequence hg38, 21 homozygous SNPs were detected in all 69 samples (Table 4) that are specific to the reference allele, that is, *RHD*DAU0 (RHD*10.00)*. Multiple intronic SNPs are suspected to be haplotype specific, for example, 23 SNPs (Table 5) were homozygous SNPs in all samples with the R₂ haplotype. They were detected in R₂R₂, R₂r, and in 3 of the 6 R₁R₂ samples (004_35, 004_36, 004_37), which were determined by dPCR to be hemizygous for *RHD* gene. These SNPs were also present in 6 R₁R₂ samples (D homozygous; 004_29, 004_30, 004_31, 004_32, 004_33, 004_34), and in the R₂R_z sample (004_69) as heterozygous SNPs.

Fifteen SNPs (Table 6) were detected as homozygous in all R_1R_1 , R_1r and in 3 of 6 R_1R_2 samples (004_38, 004_39, 004_40), which were shown by dPCR to be hemizygous for the *RHD* gene. They were also detected in all 6 R_0r samples (004_63, 004_64, 004_65, 004_66, 004_67, 004_68). These SNPs were also found as heterozygous SNPs in 6 R_1R_2 samples (D homozygous) (004_29, 004_30, 004_31, 004_32, 004_33, 004_34), and in the R_2R_2 sample (004_69). Table 7 shows the different intronic SNPs detected and their correspondence in R_2 and R_1 , R_0 , R_2 *RHD* alleles in comparison

Table 5. Intronic SNPs present in all sam	ples with R ₂ haplotype
---	------------------------------------

Position	SNP	Location	Reference SNP no.*
25 282 654	A>G	Intron 1	rs3866916
25 285 089	G>A	Intron 2	rs675072
25 287 909	C>G	Intron 2	rs28718098
25 295 072	G>A	Intron 3	rs372986392
25 295 354	C>T	Intron 3	rs2904840
25 295 489	C>T	Intron 3	rs190056379
25 295 708	G>A	Intron 3	rs182346769
25 295 731	A>G	Intron 3	rs201512625
25 295 739	G>A	Intron 3	rs200682399
25 295 753	A>G	Intron 3	rs143670081
25 298 980	T>C	Intron 3	rs2904843
25 300 575	C>G	Intron 3	rs2986167
25 305 898	A>G	Intron 6	rs12126031
25 307 714	G>A	Intron 7	rs2257611
25 308 845	G>C	Intron 7	rs2478025
25 311 722	T>A	Intron 7	rs796579065
25 316 269	A>G	Intron 7	rs2427767
25 320 442	T>G	Intron 8	rs3927482
25 321 858	T>C	Intron 8	rs28669938
25 323 393	C>T	Intron 9	rs77160738
25 323 618	G>C	Intron 9	rs201304363
25 323 713	G>C	Intron 9	rs202154122
25 327 668	A>G	Intron 9	NA†

Intronic SNPs (hg38) and their reference SNP number were present in R₂r, R₂R₂, R₁R₂, and R₂R₂ samples. Intronic SNPs were present as homozygous in all 9 weak D type 2 R₂r samples, all 6 R₂r samples and all 7 R₂R₂ samples, and in 3 of the 6 R₁R₂ samples that tested as hemizygous for the *RHD* gene by dPCR. These SNPs were also present as heterozygous SNPs in all 6 homozygous R₁R₂ samples and in the R₂R₂ sample. *from the database of SNPs.⁴⁴

*Not applicable. Not found in the database of SNPs.⁴⁴

with the reference sequence. From the 519 intronic SNPs detected, most were not conserved across each haplotype (data not shown). Most of these SNPs have been reported and show corresponding reference numbers in the database of SNPs.⁴⁴

Discussion

RHD reference sequences

We have established a methodology to fully sequence the *RHD* gene including promotor, introns, and all exons that can be used to study the different *RHD* alleles in the population to establish reference *RHD* allele sequences. We sequenced hemizygous (1 copy) *RHD* genes in samples that were confirmed to be hemizygous *RHD* samples by dPCR, and compared those sequences with homozygous (2 copy) *RHD* genes in samples in samples confirmed as homozygous *RHD* by dPCR.

Two *RHD* reference sequences were submitted to GenBank and registered with accession numbers MG944308 and MG944309 for the R₁, R₀, R_Z haplotypes and the R₂ haplotype, respectively. We are additionally working on establishing the method for fully sequencing the homologous *RHCE* gene. In many cases when serology fails to determine an RhD variant and other platforms cannot detect the *RHD* allele, follow-up work would only require

Table 6. Intronic SNPs present in all samples with $R_{1},\,R_{0},\,and\,R_{Z}$ haplotypes

Position	SNP	Location	Reference SNP no.*
25 284 544	G>C	Intron 1	rs2301153
25 292 953	G>A	Intron 3	rs28645510
25 295 317	G>A	Intron 3	rs2986157
25 295 797	T>A	Intron 3	rs2986163
25 295 800	G>A	Intron 3	rs2986164
25 296 764	A>C	Intron 3	rs599792
25 297 476	A>G	Intron 3	rs1830962
25 298 410	G>C	Intron 3	rs1293267
25 301 905	T>G	Intron 5	rs28510210
25 304 945	A>T	Intron 6	rs28685153
25 307 040	G>C	Intron 7	rs3118453
25 311 520	G>A	Intron 7	rs2478028
25 311 722	T>G	Intron 7	rs796579065
25 320 257	A>C	Intron 8	rs28628791
25 329 839	A>T	Intron 10	rs28668998

SNPs were present as homozygous in all 6 R₁R₁ samples, 1 R₁R₁ weak D type 1 sample, all 13 R₁r weak D type 1 samples, 1 R₁r weak D type 3 sample, all 6 R₁r samples, 6 R₀r samples. These SNPs were also present as hemizygous in 3 of the 6 R₁R₂ samples that tested as hemizygous for the *RHD* gene by dPCR. SNPs were also detected as heterozygous SNPs in the 6 homozygous R₁R₂ samples and 1 R₂R₂ sample.

*From the database of SNPs.44

RHD sequencing to determine the exact nucleotide changes and the *RHCE* gene sequencing would not be needed.

The *RHD* gene was fully sequenced on the lon PGM through LR-PCR amplification. Although LR-PCR is an efficient technique in amplifying the gene for sequencing, the LR-PCR approach is limited. Hybrid *RHD*-*RHCE* alleles or partial D alleles may not amplify if a primer position is compromised by deletion or mutations. The *RHD*-specific primers in the current study were subsequently tested with different weak and partial D samples including: *RHD*DVI.01*, *RHD*DNB*, *RHD*DIV.04*, *RHD*DVI.01*, *DFR1*, *DFR2*, and *RHD*DIIIa* (data not shown). Amplification for all 6 PCR amplicons was achieved in all samples except for samples with the *RHD*DVI.01* allele, in which amplicon 4 did not amplify successfully (data not shown). This issue could be resolved in the future using a hybrid primer approach, for example, an *RHD*-specific forward primer and an *RHCE*-specific reverse primer.

Data analysis revealed 3 exonic SNPs that encode 3 *RHD* alleles, which include *RHD*01W.1*, *RHD*01W.02*, and *RHD*01W.3*. Weak D type 1 *RHD*01W.1* was detected in 14 samples with R_1 haplotype, whereas weak D type 2 *RHD*01W.02* was found in 12 R_2 haplotype samples. These results support the hypothesis that different weak D alleles are linked to a specific haplotype, in which weak D type 1 is linked to the R_1 (DCe) haplotype, and weak D type 2 is linked to the R_2 (DcE) haplotype.⁴⁵ One R_1 r (DCe/dce) sample (004_28) was genotyped by NGS as weak D type 3 (*RHD*01.03*), which is linked to R_1 haplotype.⁴⁵

Rh haplotype-specific SNPs

Analyzing intronic SNPs (Table 7) revealed 21 homozygous SNPs (Table 4) present in all samples sequenced. These represent SNP variants of the *RHD*DAU0 (RHD*10.00)* allele, which the hg38

Intronic position	Reference SNP no.*	Intronic location	hg38	R ₁ , R ₀ , R _Z	R ₂
25 277 761	rs28661958	Intron 1	А	G	G
25 282 654	rs3866916	Intron 1	А	А	G
25 284 544	rs2301153	Intron 1	G	С	G
25 285 089	rs675072	Intron 2	G	G	А
25 286 520	rs183024534	Intron 2	Т	С	С
25 286 601	NA†	Intron 2	Т	А	А
25 286 605	NA†	Intron 2	А	Т	Т
25 286 674	NA†	Intron 2	С	т	т
25 286 732	NA†	Intron 2	А	G	G
25 287 909	rs28718098	Intron 2	С	С	G
25 290 908	rs28521909	Intron 3	Т	С	С
25 290 915	rs28562109	Intron 3	G	А	А
25 292 953	rs28645510	Intron 3	G	А	G
25 295 072	rs372986392	Intron 3	G	G	А
25 295 317	rs2986157	Intron 3	G	А	G
25 295 354	rs2904840	Intron 3	С	С	т
25 295 489	rs190056379	Intron 3	С	С	Т
25 295 708	rs182346769	Intron 3	G	G	А
25 295 731	rs201512625	Intron 3	А	А	G
25 295 739	rs200682399	Intron 3	G	G	А
25 295 753	rs143670081	Intron 3	А	А	G
25 295 797	rs2986163	Intron 3	т	А	т
25 295 800	rs2986164	Intron 3	G	А	G
25 295 850	rs28451966	Intron 3	А	G	G
25 296 764	rs599792	Intron 3	А	С	А
25 297 140	rs28786680	Intron 3	G	А	А
25 297 476	rs1830962	Intron 3	А	G	А
25 298 410	rs1293267	Intron 3	G	С	G
25 298 980	rs2904843	Intron 3	Т	т	С
25 300 575	rs2986167	Intron 3	С	С	G
25 301 905	rs28510210	Intron 5	Т	G	Т
25 304 945	rs28685153	Intron 6	А	т	А
25 305 164	rs28703207	Intron 6	G	т	т
25 305 898	rs12126031	Intron 6	А	А	G
25 307 040	rs3118453	Intron 7	G	С	G
25 307 714	rs2257611	Intron 7	G	G	А
25 308 306	rs28374144	Intron 7	Т	С	С
25 308 317	rs28719684	Intron 7	т	С	С
25 308 325	rs71493569	Intron 7	G	А	А
25 308 326	rs71493569	Intron 7	С	т	т
25 308 403	rs1801096	Intron 7	С	т	Т
25 308 845	rs2478025	Intron 7	G	G	С
25 311 520	rs2478028	Intron 7	G	А	G
25 311 722‡	rs796579065	Intron 7	т	G	А
25 316 058	rs28453868	Intron 7	А	G	G
25 316 269	rs2427767	Intron 7	А	А	G

Table 7. (continued)

Intronic position	Reference SNP no.*	Intronic location	hg38	R ₁ , R ₀ , R _Z	R ₂
25 319 292	rs28397158	Intron 8	т	С	С
25 320 257	rs28628791	Intron 8	А	С	А
25 320 442	rs3927482	Intron 8	Т	т	G
25 321 858	rs28669938	Intron 8	Т	т	С
25 322 588	rs28435180	Intron 9	А	G	G
25 323 393	rs77160738	Intron 9	С	С	Т
25 323 618	rs201304363	Intron 9	G	G	С
25 323 713	rs202154122	Intron 9	G	G	С
25 327 036	rs61777612	Intron 9	G	А	А
25 327 668	NA†	Intron 9	А	А	G
25 329 789	rs28654325	Intron 10	А	G	G
25 329 839	rs28668998	Intron 10	А	Т	Α

*From the database of SNPs.44

†Not applicable. Not found in the database of SNPs.44

 \pm SNP position shows 3 different nucleotides: T for reference (hg38); G for R₁, R₀, R₂ haplotypes; and A for R₂ haplotype.

reference sequence encodes. Some intronic SNPs were found to be present in a specific haplotype (R₂), 23 SNPs were homozygous in all R₂r, R₂R₂ and in 3 of the 6 R₁R₂ samples that tested as hemizygous by dPCR (Table 5). They were also detected as heterozygous SNPs in all R₁R₂ samples tested as homozygous by dPCR and in the R₂R_z sample. Homozygous intronic mutations were detected in all R₁R₁, R₁r, and in the other 3 of the 6 R₁R₂ samples tested as hemizygous in dPCR (Table 6). These SNPs were also present in 6 R₀r samples, and detected as heterozygous SNPs in 6 R₁R₂ samples tested as homozygous by dPCR and in the R₂R_z sample. The similarities of the intronic SNPs pattern between different haplotypes (R₁, R₀, and R_z) suggest that these haplotypes might have risen from the same ancestral gene. There were no intronic SNPs specific to each of the R₁, R₀, or R_z alleles.

RHAG NGS

Two samples (004_14 and 004_69) were serologically phenotyped as weak D; however, no amino acid changes were predicted from sequencing of the *RHD* gene. Different mutations in the *RHAG* gene (ISBT030) have been reported that disturb the expression of the Rh proteins.³⁶⁻³⁸ Therefore, we sequenced the *RHAG* gene for these samples (004_14 and 004_69) that showed weak D reactivity without finding any alterations in the *RHD* gene. Sample (004_14) showed a SNP 808G>A in exon 6 of the *RHAG* gene leading to Val270lle that encodes the *RHAG*04* allele. In this sample, this mutation could be the main cause for the weak D reactivity, hence no changes were detected from the sequencing of the *RHD* gene in this sample to explain the weak D reactivity.

dPCR discrepant results characterized by RHD NGS

dPCR was used to test for 2 targets in the *RHD* gene against the reference gene *AGO1* on chromosome 1. dPCR has demonstrated high sensitivity when used as a detection method for *RHD* genotyping.^{12,39} All samples included in this cohort demonstrated compatible zygosity results with the serologically predicted genotype except for 9 samples. Eight samples showed incompatible

Downloaded from http://ashpublications.net/bloodadvances/article-pdf/2/20/2713/1743611/advances017871.pdf by guest on 20 May 2024

results with the predicted genotype by serological testing; they include: 1 R₁r sample (004_14), which showed the presence of a homozygous *RHD* gene; 6 R₁R₂ samples (004_35, 004_36, 004_37, 004_38, 004_39, 004_40), which showed the presence of a hemizygous *RHD* gene; and 1 R₂R₂ sample (004_42), which showed as hemizygous for the *RHD* gene (Table 3). One R₁R₁ sample (004_07) showed a discrepancy between the *RHD5* and *RHD7* results. Sample (004_07) presented a ratio of 0.54 for *RHD5* against the reference gene *AGO1*, indicating a hemizygous result; a ratio of 1.0 for *RHD7* against the reference gene *AGO1* indicated a homozygous result. This discrepancy between hemizygous *RHD5* and homozygous *RHD7* means that 1 of the *RHD* alleles has a deletion in exon 5. This gene deletion could not be detected through the NGS due to the presence of a wild-type copy of the other *RHD* allele.

The 6 R1R2 (DCe/DcE) samples, which showed only 1 copy of the RHD gene (hemizygous), had their genotypes predicted by serology findings based on the probability of the gene in the population, but in these cases the genotypes are in fact less frequent or occurring with a lower probability. These samples are expected to be either R1r'' (DCe/dcE), Rzr (DCE/dce), R2r' (DcE/dCe), or Rory (Dce/dCE) from zygosity information, which all could be inappropriately assigned by serology as R1R2 (DCe/DcE) due to gene frequencies in the population. Three of the R_1R_2 (004_35, 004_36, 004_37) samples have the intronic SNPs suspected to be linked to the R₂ haplotype and are missing all the other intronic SNPs that are linked to the R1, R0, Rz haplotypes. Sample 004_35 was genotyped as weak D type 2, and due to the link between the R₂ haplotype and weak D type 2, this sample could only be R₂r' (DcE/dCe). The other 2 samples could also be genotyped as R₂r' (DcE/dCe) as inferred by their intronic SNP pattern. The correct genotype of the other 3 hemizygous R1R2 samples (004_38, 004_39, 004_40) missing the R2-specific SNPs could be either R1r" (DCe/dcE), Rzr (DCE/dce), or R0ry (Dce/dCE). Considering the frequency of these alleles⁴⁶ in the population, in which R_1r'' is 1%, R_Zr is 0.19%, and R₀r^y is <0.01%, it is very likely for these samples to be R1r" (DCe/dcE). Based on our zygosity results, the frequency of R_1r'' seems to be higher than anticipated⁴⁶ in the population. Definitive genotypes for these samples could be confirmed by sequencing the RHCE gene, in addition to the RHD gene, and hence only having the RHD gene sequencing to date is a limitation of this study. In ongoing work to sequence the RHCE gene, multiple primer sets have been designed to amplify the gene in LR-PCR amplicons but the regions surrounding introns 2 and 8 of the *RHCE* gene are problematic. We have sequenced 35 samples for the RHCE gene (data not shown) that had poor depth of coverage for amplicons covering introns 2 and 8, which has made data analysis and variant calling from these regions challenging. Successful and robust sequencing of the RHCE gene would add to the data set and aid identification of particular alleles in samples. It

References

will also be of interest to sequence the *RHCE* gene in samples lacking the *RHD* gene, for example, rr (dce/dce) samples.

The R₁r (004_14) sample that was homozygous *RHD* by dPCR showed R₁/R₀/R_z-related SNPs and was missing all R₂-related SNPs, suggesting that the correct genotype could be R₁R₀ (DCe/Dce). The hemizygous R₂R₂ sample (004_42) was genotyped as weak D type 2 and showed R₂-specific SNPs, therefore, its correct genotype could only be R₂r'' (DCE/dcE).

We sequenced the *RHD* gene in 69 samples using NGS to study *RHD* mutations, assessed variations present in the population and identified reference *RHD* allele sequences (Table 7). Intronic SNPs were used to determine their relation to specific haplotypes. We found that 21 intronic SNPs were present in all samples indicating their specificity to the *RHD*DAUO* (*RHD*10.00*) haplotype, which the hg38 reference sequence encodes. Twenty-three intronic SNPs were found to be R₂ specific, and 15 were related to R₁, R₀, and R_z haplotypes. In future work, we aim to identify the pattern of intronic SNPs in the *RHCE* gene. Intronic SNPs may represent a novel diagnostic approach to investigate known and novel variants of the *RHD* and *RHCE* genes.

Acknowledgments

The authors thank Michele Kiernan of the University of Plymouth Systems Biology Centre (Plymouth, United Kingdom) for carrying out the sequencing run and for support and assistance in this work. The authors thank Amr Halawani of Jazan University, Jazan, Saudi Arabia (formerly based at the University of Plymouth, Plymouth, United Kingdom), for training in NGS library preparation and bioinformatics.

This work was supported by King Abdulaziz University (Jeddah, Saudi Arabia).

Authorship

Contribution: W.A.T. performed experiments, analyzed data, and wrote the manuscript; and T.E.M. and N.D.A. supervised the study and revised the manuscript.

Conflict-of-interest disclosure: A patent relating to the Rh specificity of the intronic polymorphisms identified in this study has been filed (P120661GB) (T.E.M. and N.D.A.). The laboratory also received funding from Biofortuna for aspects of blood-group genotyping and next-generation sequencing work. N.D.A. was an expert witness for Premaitha in their UK high-court case, Premaitha vs Illumina, July 2017, relating to noninvasive prenatal diagnosis. W.A.T. declares no competing financial interests.

ORCID profiles: W.A.T., 0000-0002-8536-6989; T.E.M., 0000-0002-3463-1922; N.D.A., 0000-0002-0151-7904.

Correspondence: Tracey E. Madgett, School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL4 8AA, United Kingdom; e-mail: tracey.madgett@ plymouth.ac.uk.

- 1. Avent ND, Reid ME. The Rh blood group system: a review. Blood. 2000;95(2):375-387.
- Avent ND, Madgett TE, Lee ZE, Head DJ, Maddocks DG, Skinner LH. Molecular biology of Rh proteins and relevance to molecular medicine. Expert Rev Mol Med. 2006;8(13):1-20.
- Colin Y, Chérif-Zahar B, Le Van Kim C, Raynal V, Van Huffel V, Cartron JP. Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. *Blood.* 1991;78(10):2747-2752.

- 4. Wagner FF, Flegel WA. RHD gene deletion occurred in the Rhesus box. *Blood.* 2000;95(12):3662-3668.
- 5. Le van Kim C, Mouro I, Chérif-Zahar B, et al. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA. 1992;89(22):10925-10929.
- 6. Okuda H, Kajii E. The evolution and formation of RH genes. Leg Med (Tokyo). 2002;4(3):139-155.
- Carritt B, Kemp TJ, Poulter M. Evolution of the human RH (rhesus) blood group genes: a 50 year old prediction (partially) fulfilled. Hum Mol Genet. 1997; 6(6):843-850.
- 8. Okuda H, Suganuma H, Kamesaki T, et al. The analysis of nucleotide substitutions, gaps, and recombination events between RHD and RHCE genes through complete sequencing. *Biochem Biophys Res Commun.* 2000;274(3):670-683.
- 9. Noizat-Pirenne F, Mouro I, Gane P, et al. Heterogeneity of blood group RhE variants revealed by serological analysis and molecular alteration of the RHCE gene and transcript. Br J Haematol. 1998;103(2):429-436.
- 10. Orzińska A, Guz K, Mikula M, et al. A preliminary evaluation of next-generation sequencing as a screening tool for targeted genotyping of erythrocyte and platelet antigens in blood donors. *Blood Transfus*. 2018;16(3):285-292.
- 11. Jungbauer C. Blood group molecular genotyping. ISBT Sci Ser. 2011;6(2):399-403.
- 12. Sillence KA, Halawani AJ, Tounsi WA, et al. Rapid RHD zygosity determination using digital PCR. Clin Chem. 2017;63(8):1388-1397.
- Fichou Y, Audrézet MP, Guéguen P, Le Maréchal C, Férec C. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014;167(4):554-562.
- 14. Fichou Y, Férec C. NGS and blood group systems: state of the art and perspectives. Transfus Clin Biol. 2017;24(3):240-244.
- 15. Goldman M, Núria N, Castilho LM. An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system. Immunohematology. 2015;31(2):62-68.
- 16. Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. *Transfusion*. 2005;45(5):680-688.
- 17. Beiboer SH, Wieringa-Jelsma T, Maaskant-Van Wijk PA, et al. Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization. *Transfusion*. 2005;45(5):667-679.
- 18. Denomme GA, Van Oene M. High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. *Transfusion*. 2005;45(5):660-666.
- 19. Avent ND, Martinez A, Flegel WA, et al. The Bloodgen Project of the European Union, 2003-2009. *Transfus Med Hemother*. 2009;36(3): 162-167.
- Avent ND, Madgett TE, Halawani AJ, et al. Next generation sequencing: academic overkill or high resolution routine blood group genotyping. ISBT Sci Ser. 2015;10(suppl 1):250-256.
- 21. Lane WJ, Westhoff CM, Uy JM, et al; MedSeq Project. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. *Transfusion*. 2016;56(3):743-754.
- 22. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413-435.
- 23. Tilley L, Grimsley S. Is next generation sequencing the future of blood group testing? Transfus Apheresis Sci. 2014;50(2):183-188.
- 24. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011;38(3):95-109.
- Profaizer T, Lázár-Molnár E, Close DW, Delgado JC, Kumánovics A. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods. HLA. 2016;88(1-2):14-24.
- 26. Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. *Blood Adv.* 2016;1(3):240-249.
- 27. Dezan MR, Ribeiro IH, Oliveira VB, et al. RHD and RHCE genotyping by next-generation sequencing is an effective strategy to identify molecular variants within sickle cell disease patients. *Blood Cells Mol Dis.* 2017;65:8-15.
- Fichou Y, Mariez M, Le Maréchal C, Férec C. The experience of extended blood group genotyping by next-generation sequencing (NGS): investigation of patients with sickle-cell disease. Vox Sang. 2016;111(4):418-424.
- 29. Bakanay SM, Ozturk A, Ileri T, et al. Blood group genotyping in multi-transfused patients. Transfus Apheresis Sci. 2013;48(2):257-261.
- Chou ST, Flanagan JM, Vege S, et al. Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia. Blood Adv. 2017;1(18):1414-1422.
- Ribeiro KR, Guarnieri MH, da Costa DC, Costa FF, Pellegrino J Jr, Castilho L. DNA array analysis for red blood cell antigens facilitates the transfusion support with antigen-matched blood in patients with sickle cell disease. Vox Sang. 2009;97(2):147-152.
- 32. Stabentheiner S, Danzer M, Niklas N, et al. Overcoming methodical limits of standard RHD genotyping by next-generation sequencing. *Vox Sang.* 2011; 100(4):381-388.
- 33. Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. *Lancet Haematol.* 2015;2(7):e282-e289.
- Schoeman EM, Roulis EV, Liew YW, et al. Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting. *Transfusion*. 2018;58(2):284-293.
- 35. Hyland CA, Millard GM, O'Brien H, et al. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types. *Pathology*. 2017;49(7):757-764.

- 36. Polin H, Pelc-Klopotowska M, Danzer M, et al. Compound heterozygosity of two novel RHAG alleles leads to a considerable disruption of the Rh complex. *Transfusion*. 2016;56(4):950-955.
- 37. Wen J, Verhagen O, Jua S, et al. Identification of a RHAG*(R191Q) allele associated with a weak RHD and normal RHCE phenotype. Paper presented at the 28th ISBT Regional Congress. 28 November 2017. Guangzhou, China.
- 38. Mu S, Cui Y, Wang W, et al. A RHAG point mutation selectively disrupts Rh antigen expression [published online ahead of print 6 March 2018]. *Transfus Med.* doi:10.1111/tme.12519.
- 39. Sillence KA, Roberts LA, Hollands HJ, et al. Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR. *Clin Chem.* 2015;61(11):1399-1407.
- 40. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
- 41. National Library of Medicine, National Center for Biotechnology Information. Primer-blast. Available at: https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Accessed 5 January 2016.
- 42. National Library of Medicine, National Center for Biotechnology Information. Homo sapiens RHD gene (RHD). Accession no. 540 NC_000001.11. Available at: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.37. Accessed 25 September 2016.
- 43. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet. 2011;12(6):443-451.
- 44. National Library of Medicine, National Center for Biotechnology Information. Database of single nucleotide polymorphisms (SNPs). Available at: https://www.ncbi.nlm.nih.gov/snp/?term=. Accessed 10 October 2016.
- 45. Wagner FF, Gassner C, Müller TH, Schönitzer D, Schunter F, Flegel WA. Molecular basis of weak D phenotypes. Blood. 1999;93(1):385-393.
- 46. Daniels G. Rh and RHAG blood group systems. In: Daniels G, ed. Human Blood Groups. 3rd ed. Oxford, United Kingdom: Wiley-Blackwell; 2013:185.