• A method was devised to efficiently generate off-the-shelf human iMDSCs with potent T-cell suppressor function in vitro and in vivo.

  • iMDSCs expressed phosphoglycerate dehydrogenase, required to overcome GVHD-related, inflammasome-induced loss of suppressor function.

Abstract

Front-line pharmaceutical interventions for treating acute graft-versus-host disease (GVHD) are not uniformly effective and have toxic side effects. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with potent in vitro and in vivo immunosuppressive functions. Clinical translation of in vitro–generated MDSCs has been limited because of requirements for multiple, high infusion doses, the relatively low yield from peripheral blood–sourced MDSCs (PB-MDSCs), and inconsistent product quality. To circumvent these obstacles, we developed a methodology to generate MDSCs using human induced pluripotent stem cell (iPSC)–derived CD34+ cells. Compared with PB-MDSCs, iPSC-derived MDSCs (iMDSCs) shared similar morphology, phenotype, and suppressive function. We found that the CD14+ iMDSC subset possessed the highest suppressor function. In previous studies, we reported that MDSCs transferred into mice with GVHD lost suppressor function because of inflammasome activation and immature myeloid cell maturation. In striking contrast to human PB-MDSCs, we show herein that iMDSCs retained 95% of suppressor function in vitro despite exposure to lipopolysaccharide (LPS) plus adenosine triphosphate (ATP), which are stimuli that activate the inflammasome via danger-associated molecular patterns released during early posttransplant conditioning and GVHD-induced injury. In an in vivo xenogenic GVHD model with PB mononuclear cells, iMDSCs significantly increased recipient survival without loss of antileukemia effects. iMDSC RNA sequencing and gene knockdown studies revealed that the maintenance of the purine metabolizing enzyme, phosphoglycerate dehydrogenase, during LPS plus ATP treatment, was linked to iMDSC inflammasome resistance. Taken together, these findings provide a platform for translating in vitro–generated, off-the-shelf iMDSCs into the clinic for suppressing a spectrum of adverse immune responses, including GVHD.

1.
Granot
N
,
Storb
R
.
History of hematopoietic cell transplantation: challenges and progress
.
Haematologica
.
2020
;
105
(
12
):
2716
-
2729
.
2.
Bolon
YT
,
Atshan
R
,
Allbee-Johnson
M
,
Estrada-Merly
N
,
Lee
SJ
.
Current use and outcome of hematopoietic stem cell transplantation: CIBMTR summary slides
. 2022. Accessed 2024. http://www.cibmtr.org/.
3.
Hill
GR
,
Betts
BC
,
Tkachev
V
,
Kean
LS
,
Blazar
BR
.
Current concepts and advances in graft-versus-host disease immunology
.
Annu Rev Immunol
.
2021
;
39
:
19
-
49
.
4.
Socié
Gr
,
Blazar
BR
.
Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation: Models in Discovery and Translation
. 1st ed.
Elsevier/Academic Press
;
2012
.
5.
Holtan
SG
,
Pasquini
M
,
Weisdorf
DJ
.
Acute graft-versus-host disease: a bench-to-bedside update
.
Blood
.
2014
;
124
(
3
):
363
-
373
.
6.
Malard
F
,
Huang
XJ
,
Sim
JPY
.
Treatment and unmet needs in steroid-refractory acute graft-versus-host disease
.
Leukemia
.
2020
;
34
(
5
):
1229
-
1240
.
7.
Zeiser
R
,
Blazar
BR
.
Acute graft-versus-host disease - biologic process, prevention, and therapy
.
N Engl J Med
.
2017
;
377
(
22
):
2167
-
2179
.
8.
Jamy
O
,
Zeiser
R
,
Chen
YB
.
Novel developments in the prophylaxis and treatment of acute GVHD
.
Blood
.
2023
;
142
(
12
):
1037
-
1046
.
9.
Toubai
T
,
Magenau
J
.
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease
.
Blood
.
2020
;
136
(
4
):
429
-
440
.
10.
Voermans
C
,
Hazenberg
MD
.
Cellular therapies for graft-versus-host disease: a tale of tissue repair and tolerance
.
Blood
.
2020
;
136
(
4
):
410
-
417
.
11.
Demosthenous
C
,
Sakellari
I
,
Douka
V
,
Papayanni
PG
,
Anagnostopoulos
A
,
Gavriilaki
E
.
The role of myeloid-derived suppressor cells (MDSCs) in graft-versus-host disease (GVHD)
.
J Clin Med
.
2021
;
10
(
10
):
2050
.
12.
Wang
D
,
Yu
Y
,
Haarberg
K
, et al
.
Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice
.
Biol Blood Marrow Transpl
.
2013
;
19
(
5
):
692
-
702
.
13.
Talmadge
JE
,
Gabrilovich
DI
.
History of myeloid-derived suppressor cells
.
Nat Rev Cancer
.
2013
;
13
(
10
):
739
-
752
.
14.
Bronte
V
,
Brandau
S
,
Chen
SH
, et al
.
Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards
.
Nat Commun
.
2016
;
7
:
12150
.
15.
Tcyganov
E
,
Mastio
J
,
Chen
E
,
Gabrilovich
DI
.
Plasticity of myeloid-derived suppressor cells in cancer
.
Curr Opin Immunol
.
2018
;
51
:
76
-
82
.
16.
Cai
S
,
Choi
JY
,
Borges
TJ
, et al
.
Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo
.
Sci Rep
.
2020
;
10
(
1
):
14249
.
17.
Park
MY
,
Lim
BG
,
Kim
SY
,
Sohn
HJ
,
Kim
S
,
Kim
TG
.
GM-CSF promotes the expansion and differentiation of cord blood myeloid-derived suppressor cells, which attenuate xenogeneic graft-vs.-host disease
.
Front Immunol
.
2019
;
10
:
183
.
18.
Lechner
MG
,
Liebertz
DJ
,
Epstein
AL
.
Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells
.
J Immunol
.
2010
;
185
(
4
):
2273
-
2284
.
19.
Koehn
BH
,
Saha
A
,
McDonald-Hyman
C
, et al
.
Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD
.
Blood
.
2019
;
134
(
19
):
1670
-
1682
.
20.
Koehn
BH
,
Apostolova
P
,
Haverkamp
JM
, et al
.
GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells
.
Blood
.
2015
;
126
(
13
):
1621
-
1628
.
21.
Demirci
S
,
Leonard
A
,
Tisdale
JF
.
Hematopoietic stem cells from pluripotent stem cells: clinical potential, challenges, and future perspectives
.
Stem Cells Transl Med
.
2020
;
9
(
12
):
1549
-
1557
.
22.
Ma
L
,
Fink
J
,
Yao
K
, et al
.
Immunoregulatory iPSC-derived non-lymphoid progeny in autoimmunity and GVHD alloimmunity
.
Stem Cells
.
2025; Apr 22
;
43
(
4
):
sxaf011
.
23.
Cichocki
F
,
Bjordahl
R
,
Gaidarova
S
, et al
.
iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy
.
Sci Transl Med
.
2020
;
12
(
568
):
eaaz5618
.
24.
Ackermann
M
,
Kempf
H
,
Hetzel
M
, et al
.
Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections
.
Nat Commun
.
2018
;
9
(
1
):
5088
.
25.
Valamehr
B
,
Abujarour
R
,
Robinson
M
, et al
.
A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs
.
Sci Rep
.
2012
;
2
:
213
.
26.
Valamehr
B
,
Robinson
M
,
Abujarour
R
, et al
.
Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells
.
Stem Cell Rep
.
2014
;
2
(
3
):
366
-
381
.
27.
Choi
KD
,
Vodyanik
M
,
Slukvin
II
.
Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells
.
Nat Protoc
.
2011
;
6
(
3
):
296
-
313
.
28.
Tolar
J
,
Park
IH
,
Xia
L
, et al
.
Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome)
.
Blood
.
2011
;
117
(
3
):
839
-
847
.
29.
Tsutsui
H
,
Valamehr
B
,
Hindoyan
A
, et al
.
An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells
.
Nat Commun
.
2011
;
2
:
167
.
30.
Stacer
AC
,
Nyati
S
,
Moudgil
P
, et al
.
NanoLuc reporter for dual luciferase imaging in living animals
.
Mol Imaging
.
2013
;
12
(
7
):
1
-
13
.
31.
Guibentif
C
,
Rönn
RE
,
Böiers
C
, et al
.
Single-cell analysis identifies distinct stages of human endothelial-to-hematopoietic transition
.
Cell Rep
.
2017
;
19
(
1
):
10
-
19
.
32.
Rheinländer
A
,
Schraven
B
,
Bommhardt
U
.
CD45 in human physiology and clinical medicine
.
Immunol Lett
.
2018
;
196
:
22
-
32
.
33.
Faramarz
N
,
Rao
PN
,
Song
SX
,
Grody
WW
. Principles of immunophenotyping. In:
Faramarz
N
,
Rao
PN
,
Song
SX
,
Grody
WW
, eds.
Atlas of Hematopathology: Morphology, Immunophenotype, Cytogenetics, and Molecular Approaches
.
Academic Press
;
2013
:
25
-
46
.
34.
Bertani
FR
,
Mozetic
P
,
Fioramonti
M
, et al
.
Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis
.
Sci Rep
.
2017
;
7
(
1
):
8965
.
35.
Veglia
F
,
Perego
M
,
Gabrilovich
D
.
Myeloid-derived suppressor cells coming of age
.
Nat Immunol
.
2018
;
19
(
2
):
108
-
119
.
36.
Gantt
S
,
Gervassi
A
,
Jaspan
H
,
Horton
H
.
The role of myeloid-derived suppressor cells in immune ontogeny
.
Front Immunol
.
2014
;
5
:
387
.
37.
Luan
Y
,
Mosheir
E
,
Menon
MC
, et al
.
Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion
.
Am J Transpl
.
2013
;
13
(
12
):
3123
-
3131
.
38.
Kotsakis
A
,
Harasymczuk
M
,
Schilling
B
,
Georgoulias
V
,
Argiris
A
,
Whiteside
TL
.
Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples
.
J Immunol Methods
.
2012
;
381
(
1-2
):
14
-
22
.
39.
Condamine
T
,
Mastio
J
,
Gabrilovich
DI
.
Transcriptional regulation of myeloid-derived suppressor cells
.
J Leukoc Biol
.
2015
;
98
(
6
):
913
-
922
.
40.
Youn
JI
,
Nagaraj
S
,
Collazo
M
,
Gabrilovich
DI
.
Subsets of myeloid-derived suppressor cells in tumor-bearing mice
.
J Immunol
.
2008
;
181
(
8
):
5791
-
5802
.
41.
Gabrilovich
DI
,
Nagaraj
S
.
Myeloid-derived suppressor cells as regulators of the immune system
.
Nat Rev Immunol
.
2009
;
9
(
3
):
162
-
174
.
42.
Schroeder
T
,
Kohlhof
H
,
Rieber
N
,
Just
U
.
Notch signaling induces multilineage myeloid differentiation and up-regulates PU.1 expression
.
J Immunol
.
2003
;
170
(
11
):
5538
-
5548
.
43.
McLemore
ML
,
Grewal
S
,
Liu
F
, et al
.
STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation
.
Immunity
.
2001
;
14
(
2
):
193
-
204
.
44.
Liu
Z
,
Gu
Y
,
Chakarov
S
, et al
.
Fate mapping via Ms4a3-expression history traces monocyte-derived cells
.
Cell
.
2019
;
178
(
6
):
1509
-
1525.e19
.
45.
Ishibashi
T
,
Yokota
T
,
Satoh
Y
, et al
.
Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis
.
Biochem Biophys Res Commun
.
2018
;
495
(
3
):
2338
-
2343
.
46.
Kurotaki
D
,
Osato
N
,
Nishiyama
A
, et al
.
Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation
.
Blood
.
2013
;
121
(
10
):
1839
-
1849
.
47.
Waight
JD
,
Netherby
C
,
Hensen
ML
, et al
.
Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis
.
J Clin Invest
.
2013
;
123
(
10
):
4464
-
4478
.
48.
Sichien
D
,
Scott
CL
,
Martens
L
, et al
.
IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively
.
Immunity
.
2016
;
45
(
3
):
626
-
640
.
49.
Yáñez
A
,
Ng
MY
,
Hassanzadeh-Kiabi
N
,
Goodridge
HS
.
IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production
.
Blood
.
2015
;
125
(
9
):
1452
-
1459
.
50.
Movahedi
K
,
Guilliams
M
,
Van den Bossche
J
, et al
.
Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity
.
Blood
.
2008
;
111
(
8
):
4233
-
4244
.
51.
Liu
Y
,
He
M
,
Wang
D
, et al
.
HisgAtlas 1.0: a human immunosuppression gene database
.
Database (Oxford)
.
2017
;
2017
:
2017
.
52.
Dugast
AS
,
Haudebourg
T
,
Coulon
F
, et al
.
Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion
.
J Immunol
.
2008
;
180
(
12
):
7898
-
7906
.
53.
Lindau
D
,
Gielen
P
,
Kroesen
M
,
Wesseling
P
,
Adema
GJ
.
The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells
.
Immunology
.
2013
;
138
(
2
):
105
-
115
.
54.
Flies
DB
,
Han
X
,
Higuchi
T
, et al
.
Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell-mediated immunity
.
J Clin Invest
.
2014
;
124
(
5
):
1966
-
1975
.
55.
ElTanbouly
MA
,
Zhao
Y
,
Nowak
E
, et al
.
VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance
.
Science
.
2020
;
367
(
6475
):
eaay0524
.
56.
Veenstra
RG
,
Taylor
PA
,
Zhou
Q
, et al
.
Contrasting acute graft-versus-host disease effects of Tim-3/galectin-9 pathway blockade dependent upon the presence of donor regulatory T cells
.
Blood
.
2012
;
120
(
3
):
682
-
690
.
57.
Toubai
T
,
Hou
G
,
Mathewson
N
, et al
.
Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice
.
Blood
.
2014
;
123
(
22
):
3512
-
3523
.
58.
Magenau
J
,
Jaglowski
S
,
Uberti
J
, et al
.
A phase 2 trial of CD24Fc for prevention of graft-versus-host disease
.
Blood
.
2024
;
143
(
1
):
21
-
31
.
59.
Baller
J
,
Kono
T
,
Herman
A
,
Zhang
Y
. CHURP: a lightweight CLI framework to enable novice users to analyze sequencing datasets in parallel.
Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning)
.
Association for Computing Machinery
;
2019
:
1
-
5
. Article 95.
60.
Andrews
S
.
FASTQC. A quality control tool for high throughput sequence data
. 2010. Accessed 2023. https://github.com/s-andrews/FastQC.
61.
Bolger
AM
,
Lohse
M
,
Usadel
B
.
Trimmomatic: a flexible trimmer for Illumina sequence data
.
Bioinformatics
.
2014
;
30
(
15
):
2114
-
2120
.
62.
Kim
D
,
Paggi
JM
,
Park
C
,
Bennett
C
,
Salzberg
SL
.
Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
.
Nat Biotechnol
.
2019
;
37
(
8
):
907
-
915
.
63.
Danecek
P
,
Bonfield
JK
,
Liddle
J
, et al
.
Twelve years of SAMtools and BCFtools
.
Gigascience
.
2021
;
10
(
2
):
giab008
.
64.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
;
30
(
7
):
923
-
930
.
65.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
66.
Reid
MA
,
Allen
AE
,
Liu
S
, et al
.
Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism
.
Nat Commun
.
2018
;
9
(
1
):
5442
.
67.
Ducker
GS
,
Rabinowitz
JD
.
One-carbon metabolism in health and disease
.
Cell Metab
.
2017
;
25
(
1
):
27
-
42
.
68.
Rodriguez
AE
,
Ducker
GS
,
Billingham
LK
, et al
.
Serine metabolism supports macrophage IL-1β production
.
Cell Metab
.
2019
;
29
(
4
):
1003
-
1011.e1004
.
69.
Wang
C
,
Chen
Q
,
Chen
S
, et al
.
Serine synthesis sustains macrophage IL-1β production via NAD+-dependent protein acetylation
.
Mol Cell
.
2024
;
84
(
4
):
744
-
759.e746
.
70.
Cai
Z
,
Li
W
,
Hager
S
, et al
.
Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling
.
Cell Mol Immunol
.
2024
;
21
(
5
):
448
-
465
.
71.
Mendt
M
,
Daher
M
,
Basar
R
, et al
.
Metabolic reprogramming of GMP grade cord tissue derived mesenchymal stem cells enhances their suppressive potential in GVHD
.
Front Immunol
.
2021
;
12
:
631353
.
72.
Li
X
,
Burnight
ER
,
Cooney
AL
, et al
.
piggyBac transposase tools for genome engineering
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
25
):
E2279
-
E2287
.
73.
Sirpilla
O
,
Sakemura
RL
,
Hefazi
M
, et al
.
Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression
.
Nat Biomed Eng
.
2024
;
8
(
4
):
443
-
460
.
74.
Hess
NJ
,
Hudson
AW
,
Hematti
P
,
Gumperz
JE
.
Early T cell activation metrics predict graft-versus-host disease in a humanized mouse model of hematopoietic stem cell transplantation
.
J Immunol
.
2020
;
205
(
1
):
272
-
281
.
75.
Wang
D
,
Sun
YQ
,
Gao
WX
,
Fan
XL
,
Shi
JB
,
Fu
QL
.
An in vitro and in vivo study of the effect of dexamethasone on immunoinhibitory function of induced pluripotent stem cell-derived mesenchymal stem cells
.
Cell Transpl
.
2018
;
27
(
9
):
1340
-
1351
.
76.
Sarhan
D
,
Brandt
L
,
Felices
M
, et al
.
161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS
.
Blood Adv
.
2018
;
2
(
12
):
1459
-
1469
.
77.
Gleason
MK
,
Ross
JA
,
Warlick
ED
, et al
.
CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets
.
Blood
.
2014
;
123
(
19
):
3016
-
3026
.
78.
Radojević
D
,
Bekić
M
,
Gruden-Movsesijan
A
, et al
.
Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis
.
Gut Microbes
.
2022
;
14
(
1
):
2127455
.
79.
Hamano
M
,
Haraguchi
Y
,
Sayano
T
, et al
.
Enhanced vulnerability to oxidative stress and induction of inflammatory gene expression in 3-phosphoglycerate dehydrogenase-deficient fibroblasts
.
FEBS Open Bio
.
2018
;
8
(
6
):
914
-
922
.
80.
Tang
D
,
Chen
X
,
Kang
R
,
Kroemer
G
.
Ferroptosis: molecular mechanisms and health implications
.
Cell Res
.
2021
;
31
(
2
):
107
-
125
.
81.
Bergenfelz
C
,
Leandersson
K
.
The generation and identity of human myeloid-derived suppressor cells
.
Front Oncol
.
2020
;
10
:
109
.
82.
Kumar
V
,
Patel
S
,
Tcyganov
E
,
Gabrilovich
DI
.
The nature of myeloid-derived suppressor cells in the tumor microenvironment
.
Trends Immunol
.
2016
;
37
(
3
):
208
-
220
.
83.
Ivanovs
A
,
Rybtsov
S
,
Ng
ES
,
Stanley
EG
,
Elefanty
AG
,
Medvinsky
A
.
Human haematopoietic stem cell development: from the embryo to the dish
.
Development
.
2017
;
144
(
13
):
2323
-
2337
.
84.
Koehn
BH
,
Blazar
BR
.
Role of myeloid-derived suppressor cells in allogeneic hematopoietic cell transplantation
.
J Leukoc Biol
.
2017
;
102
(
2
):
335
-
341
.
85.
Zhang
W
,
Li
J
,
Qi
G
,
Tu
G
,
Yang
C
,
Xu
M
.
Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy
.
J Transl Med
.
2018
;
16
(
1
):
19
.
86.
Ochando
J
,
Conde
P
,
Utrero-Rico
A
,
Paz-Artal
E
.
Tolerogenic role of myeloid suppressor cells in organ transplantation
.
Front Immunol
.
2019
;
10
:
374
.
87.
Pierini
A
,
Colonna
L
,
Alvarez
M
, et al
.
Donor requirements for regulatory T cell suppression of murine graft-versus-host disease
.
J Immunol
.
2015
;
195
(
1
):
347
-
355
.
88.
Larson
JH
,
Jin
S
,
Loschi
M
, et al
.
Enforced gut homing of murine regulatory T cells reduces early graft-versus-host disease severity
.
Am J Transpl
.
2023
;
23
(
8
):
1102
-
1115
.
You do not currently have access to this content.
Sign in via your Institution