• Optical measurements of cerebral blood flow are validated against perfusion MRI in pediatric SCA.

  • Voxelotor significantly decreases OEF and cerebral blood flow toward levels seen in healthy children.

Abstract

Voxelotor is an inhibitor of sickle hemoglobin polymerization that is used to treat sickle cell disease. Although voxelotor has been shown to improve anemia, the clinical benefit on the brain remains to be determined. This study quantified the cerebral hemodynamic effects of voxelotor in children with sickle cell anemia (SCA) using noninvasive diffuse optical spectroscopies. Specifically, frequency-domain near-infrared spectroscopy combined with diffuse correlation spectroscopy were used to noninvasively assess regional oxygen extraction fraction (OEF), cerebral blood volume, and an index of cerebral blood flow (CBFi). Estimates of CBFi were first validated against arterial spin–labeled magnetic resonance imaging (ASL-MRI) in 8 children with SCA aged 8 to 18 years. CBFi was significantly positively correlated with ASL-MRI–measured blood flow (R2 = 0.651; P = .015). Next, a single-center, open-label pilot study was completed in 8 children with SCA aged 4 to 17 years on voxelotor, monitored before treatment initiation and at 4, 8, and 12 weeks (NCT05018728). By 4 weeks, both OEF and CBFi significantly decreased, and these decreases persisted to 12 weeks (both P < .05). Decreases in CBFi were significantly correlated with increases in blood hemoglobin (Hb) concentration (P = .025), whereas the correlation between decreases in OEF and increases in Hb trended toward significance (P = .12). Given that previous work has shown that oxygen extraction and blood flow are elevated in pediatric SCA compared with controls, these results suggest that voxelotor may reduce cerebral hemodynamic impairments. This trial was registered at www.ClinicalTrials.gov as #NCT05018728.

1.
Jordan
LC
,
Kassim
AA
,
Donahue
MJ
, et al
.
Silent infarct is a risk factor for infarct recurrence in adults with sickle cell anemia
.
Neurology
.
2018
;
91
(
8
):
e781
-
e784
.
2.
Runge
A
,
Brazel
D
,
Pakbaz
Z
.
Stroke in sickle cell disease and the promise of recent disease modifying agents
.
J Neurol Sci
.
2022
;
442
:
120412
.
3.
Juttukonda
MR
,
Lee
CA
,
Patel
NJ
, et al
.
Differential cerebral hemometabolic responses to blood transfusions in adults and children with sickle cell anemia
.
J Magn Reson Imaging
.
2019
;
49
(
2
):
466
-
477
.
4.
Guilliams
KP
,
Fields
ME
,
Ragan
DK
, et al
.
Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia
.
Blood
.
2018
;
131
(
9
):
1012
-
1021
.
5.
Fields
ME
,
Mirro
AE
,
Binkley
MM
, et al
.
Cerebral oxygen metabolic stress is increased in children with sickle cell anemia compared to anemic controls
.
Am J Hematol
.
2022
;
97
(
6
):
682
-
690
.
6.
Ford
AL
,
Ragan
DK
,
Fellah
S
, et al
.
Silent infarcts in sickle cell disease occur in the border zone region and are associated with low cerebral blood flow
.
Blood
.
2018
;
132
(
16
):
1714
-
1723
.
7.
Fields
ME
,
Guilliams
KP
,
Ragan
DK
, et al
.
Regional oxygen extraction predicts border zone vulnerability to stroke in sickle cell disease
.
Neurology
.
2018
;
90
(
13
):
e1134
-
e1142
.
8.
Howard
J
,
Hemmaway
CJ
,
Telfer
P
, et al
.
A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease
.
Blood
.
2019
;
133
(
17
):
1865
-
1875
.
9.
Vichinsky
E
,
Hoppe
CC
,
Ataga
KI
, et al
.
A phase 3 randomized trial of voxelotor in sickle cell disease
.
N Engl J Med
.
2019
;
381
(
6
):
509
-
519
.
10.
Estepp
JH
,
Kalpatthi
R
,
Woods
G
, et al
.
Safety and efficacy of voxelotor in pediatric patients with sickle cell disease aged 4 to 11 years
.
Pediatr Blood Cancer
.
2022
;
69
(
8
):
e29716
.
11.
Howard
J
,
Ataga
KI
,
Brown
RC
, et al
.
Voxelotor in adolescents and adults with sickle cell disease (HOPE): long-term follow-up results of an international, randomised, double-blind, placebo-controlled, phase 3 trial
.
Lancet Haematol
.
2021
;
8
(
5
):
e323
-
e333
.
12.
Eaton
WA
,
Bunn
HF
.
Treating sickle cell disease by targeting HbS polymerization
.
Blood
.
2017
;
129
(
20
):
2719
-
2726
.
13.
Ferrone
FA
.
More of the same? Voxelotor spawns a successor, but on what success does it build?
.
Br J Haematol
.
2023
;
202
(
1
):
13
-
15
.
14.
Stotesbury
H
,
Kawadler
JM
,
Hales
PW
,
Saunders
DE
,
Clark
CA
,
Kirkham
FJ
.
Vascular instability and neurological morbidity in sickle cell disease: an integrative framework
.
Front Neurol
.
2019
;
10
:
871
.
15.
Kato
GJ
,
Piel
FB
,
Reid
CD
, et al
.
Sickle cell disease
.
Nat Rev Dis Primers
.
2018
;
4
(
1
):
18010
.
16.
Jain
V
,
Buckley
EM
,
Licht
DJ
, et al
.
Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics
.
J Cereb Blood Flow Metab
.
2014
;
34
(
3
):
380
-
388
.
17.
Lynch
JM
,
Buckley
EM
,
Schwab
PJ
, et al
.
Noninvasive optical quantification of cerebral venous oxygen saturation in humans
.
Acad Radiol
.
2014
;
21
(
2
):
162
-
167
.
18.
Kleiser
S
,
Ostojic
D
,
Andresen
B
, et al
.
Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension
.
Biomed Opt Express
.
2018
;
9
(
1
):
86
-
101
.
19.
Fantini
S
,
Sassaroli
A
.
Frequency-domain techniques for cerebral and functional near-infrared spectroscopy
.
Front Neurosci
.
2020
;
14
:
300
.
20.
Watzman
HM
,
Kurth
CD
,
Montenegro
LM
,
Rome
J
,
Steven
JM
,
Nicolson
SC
.
Arterial and venous contributions to near-infrared cerebral oximetry
.
Anesthesiology
.
2000
;
93
(
4
):
947
-
953
.
21.
Durduran
T
,
Choe
R
,
Baker
WB
,
Yodh
AG
.
Diffuse optics for tissue monitoring and tomography
.
Rep Prog Phys
.
2010
;
73
(
7
):
076701
.
22.
Buckley
EM
,
Cook
NM
,
Durduran
T
, et al
.
Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound
.
Opt Express
.
2009
;
17
(
15
):
12571
-
12581
.
23.
Roche-Labarbe
N
,
Carp
SA
,
Surova
A
, et al
.
Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life
.
Hum Brain Mapp
.
2010
;
31
(
3
):
341
-
352
.
24.
Durduran
T
,
Yodh
AG
.
Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
.
Neuroimage
.
2014
;
85 Pt 1
(
0 1
):
51
-
63
.
25.
Kim
MN
,
Durduran
T
,
Frangos
S
, et al
.
Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults
.
Neurocrit Care
.
2010
;
12
(
2
):
173
-
180
.
26.
Lee
SY
,
Cowdrick
KR
,
Sanders
B
, et al
.
Noninvasive optical assessment of resting-state cerebral blood flow in children with sickle cell disease
.
Neurophotonics
.
2019
;
6
(
3
):
035006
.
27.
Lee
SY
,
Brothers
RO
,
Turrentine
KB
, et al
.
Quantifying the cerebral hemometabolic response to blood transfusion in pediatric sickle cell disease with diffuse optical spectroscopies
.
Front Neurol
.
2022
;
13
:
869117
.
28.
Juttukonda
MR
,
Jordan
LC
,
Gindville
MC
,
Pruthi
S
,
Donahue
MJ
.
Quantitation of arterial spin labeling MRI labeling efficiency in high cervical velocity conditions using phase contrast angiography. Paper presented at: IEEE 13th International Symposium on Biomedical Imaging (ISBI); 13-16 April 2016; Prague, Czech Republic. pp 1350-1353
. http://doi.org/10.1109/ISBI.2016.7493517.
29.
Václavů
L
,
Van Der Land
V
,
Heijtel
DFR
, et al
.
In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI
.
AJNR Am J Neuroradiol
.
2016
;
37
(
9
):
1727
-
1732
.
30.
Dufu
K
,
Patel
M
,
Oksenberg
D
,
Cabrales
P
.
GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions
.
Clin Hemorheol Microcirc
.
2018
;
70
(
1
):
95
-
105
.
31.
Wang
Y
,
Fellah
S
,
Fields
ME
, et al
.
Cerebral oxygen metabolic stress, microstructural injury, and infarction in adults with sickle cell disease
.
Neurology
.
2021
;
97
(
9
):
e902
-
e912
.
32.
Kosinski
P
,
Croal
PL
,
Williams
S
,
Leung
J
,
Kassner
A
.
Transfusion therapy and hydroxyurea improves cerebrovascular reserve and perfusion in children with sickle cell anemia: an MRI study [abstract]
.
Blood
.
2015
;
126
(
23
):
3397
.
33.
Hasson
C
,
Veling
L
,
Rico
J
,
Mhaskar
R
.
The role of hydroxyurea to prevent silent stroke in sickle cell disease: systematic review and meta-analysis
.
Medicine
.
2019
;
98
(
51
):
e18225
.
34.
Osunkwo
I
,
Anderson
A
,
Brown
RC
,
Shah
N
,
Estepp
JH
.
A clinician’s view of voxelotor
.
Br J Haematol
.
2022
;
199
(
4
):
616
-
618
.
35.
Jordan
LC
,
Gindville
MC
,
Scott
AO
, et al
.
Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia
.
Brain
.
2016
;
139
(
Pt 3
):
738
-
750
.
36.
Bush
AM
,
Coates
TD
,
Wood
JC
.
Diminished cerebral oxygen extraction and metabolic rate in sickle cell disease using T2 relaxation under spin tagging MRI: diminished OEF in SCD using TRUST MRI
.
Magn Reson Med
.
2018
;
80
(
1
):
294
-
303
.
37.
Shen
J
,
Miao
X
,
Vu
C
, et al
.
Anemia increases oxygen extraction fraction in deep brain structures but not in the cerebral cortex
.
Front Physiol
.
2022
;
13
:
896006
.
38.
Hulbert
ML
,
Fields
ME
,
Guilliams
KP
, et al
.
Normalization of cerebral hemodynamics after hematopoietic stem cell transplant in children with sickle cell disease
.
Blood
.
2023
;
141
(
4
):
335
-
344
.
39.
Vu
C
,
Bush
A
,
Choi
S
, et al
.
Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias
.
Am J Hematol
.
2021
;
96
(
8
):
901
-
913
.
40.
Václavů
L
,
Petr
J
,
Petersen
ET
, et al
.
Cerebral oxygen metabolism in adults with sickle cell disease
.
Am J Hematol
.
2020
;
95
(
4
):
401
-
412
.
41.
Lin
Z
,
McIntyre
T
,
Jiang
D
, et al
.
Brain oxygen extraction and metabolism in pediatric patients with sickle cell disease: comparison of four calibration models
.
Front Physiol
.
2022
;
13
:
814979
.
42.
Stout
JN
,
Lin
P
,
Sutin
J
,
Higgins
J
,
Grant
PE
.
Magnetic resonance imaging metrics of oxygen extraction fraction: contradictions or insight into pathophysiological mechanisms?
.
Am J Hematol
.
2022
;
97
(
6
):
679
-
681
.
43.
Dutra
FF
,
Bozza
MT
.
Heme on innate immunity and inflammation
.
Front Pharmacol
.
2014
;
5
:
115
.
44.
Chonat
S
,
Fields
E
,
Baratz
H
, et al
.
Improvement in red blood cell physiology in children with sickle cell anemia receiving voxelotor [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
2281
.
45.
Ayaz
H
,
Baker
WB
,
Blaney
G
, et al
.
Optical imaging and spectroscopy for the study of the human brain: status report
.
Neurophotonics
.
2022
;
9
(
suppl 2
):
S24001
.
You do not currently have access to this content.
Sign in via your Institution