• RM retains the functional abilities of RBM15 and additionally interacts with Wnt-related transcripts to increase expression of Fzd proteins.

  • The METTL3 writer complex and Wnt signaling pathways are essential for RM-driven leukemia.

Abstract

The recurrent t(1;22) translocation in acute megakaryoblastic leukemia (AMKL) encodes the RBM15-MKL1 fusion protein. Dysregulation of the N6-methyladenosine (m6A) modification affects RNA fate and is linked to oncogenesis. Because RBM15 is critical for bringing the m6A writer complex to specific RNAs, we hypothesized that RM disrupts the m6A modification, thereby altering the RNA fate to drive leukemogenesis in RM-AMKL. Using a multiomics approach, we showed for the first time, to our knowledge, that RM retains the RNA-binding and m6A-modifying functions of RBM15 while also selectively regulating distinct messenger RNA targets, including Frizzled genes, in the Wnt signaling pathway. Treating murine RM-AMKL cells with the methyltransferase 3 (METTL3) inhibitor STM3675, which decreases m6A deposition, induced apoptosis in vitro and prolonged survival in transplanted mice. Frizzled genes were upregulated by RM and downregulated upon METTL3 inhibition, implicating an m6A-dependent mechanism in their dysregulation. Direct Frizzled knockdown reduced RM-AMKL growth in vitro and in vivo, highlighting Wnt signaling as a key oncogenic driver. Elevated Wnt pathway activity and Frizzled expression in multiple forms of human AMKL underscores the relevance of our findings. Together, our results establish that RM-specific m6A modifications and Wnt pathway activation are critical drivers of RM-AMKL, thereby identifying these pathways as potential therapeutic targets.

1.
De Rooij
JDE
,
Branstetter
C
,
Ma
J
, et al
.
Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes
.
Nat Genet
.
2017
;
49
(
3
):
451
-
456
.
2.
Carroll
A
,
Civin
C
,
Schneider
N
, et al
.
The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group study
.
Blood
.
1991
;
78
(
3
):
748
-
752
.
3.
Baruchel
A
,
Daniel
MT
,
Schaison
G
,
Berger
R
.
Nonrandom t(1;22)(p12-p13;q13) in acute megakaryocytic malignant proliferation
.
Cancer Genet Cytogenet
.
1991
;
54
(
2
):
239
-
243
.
4.
Wang
X
,
Lu
Z
,
Gomez
A
, et al
.
N 6-methyladenosine-dependent regulation of messenger RNA stability
.
Nature
.
2014
;
505
(
7481
):
117
-
120
.
5.
Patil
DP
,
Chen
C-K
,
Pickering
BF
, et al
.
m(6)A RNA methylation promotes XIST-mediated transcriptional repression
.
Nature
.
2016
;
537
(
7620
):
369
-
373
.
6.
Meyer
KD
,
Patil
DP
,
Zhou
J
, et al
.
5′ UTR m(6)A promotes Cap-independent translation
.
Cell
.
2015
;
163
(
4
):
999
-
1010
.
7.
Dominissini
D
,
Moshitch-Moshkovitz
S
,
Schwartz
S
, et al
.
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
.
Nature
.
2012
;
485
(
7397
):
201
-
206
.
8.
Xiao
W
,
Adhikari
S
,
Dahal
U
, et al
.
Nuclear m(6)A reader YTHDC1 regulates mRNA splicing [published correction appears in Mol Cell. 2016;61(6):925]
.
Mol Cell
.
2016
;
61
(
4
):
507
-
519
.
9.
Appel
LM
,
Franke
V
,
Benedum
J
, et al
.
The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators
.
Nat Commun
.
2023
;
14
(
1
):
166
.
10.
Coker
H
,
Wei
G
,
Moindrot
B
,
Mohammed
S
,
Nesterova
T
,
Brockdorff
N
.
The role of the Xist 5′ m6A region and RBM15 in X chromosome inactivation
.
Wellcome Open Res
.
2020
;
5
:
31
.
11.
Cen
B
,
Selvaraj
A
,
Prywes
R
.
Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression
.
J Cell Biochem
.
2004
;
93
(
1
):
74
-
82
.
12.
Cen
B
,
Selvaraj
A
,
Burgess
RC
, et al
.
Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes
.
Mol Cell Biol
.
2003
;
23
(
18
):
6597
-
6608
.
13.
Miralles
F
,
Posern
G
,
Zaromytidou
AI
,
Treisman
R
.
Actin dynamics control SRF activity by regulation of its coactivator MAL
.
Cell
.
2003
;
113
(
3
):
329
-
342
.
14.
Posern
G
,
Treisman
R
.
Actin’ together: serum response factor, its cofactors and the link to signal transduction
.
Trends Cell Biol
.
2006
;
16
(
11
):
588
-
596
.
15.
Cheng
EC
,
Luo
Q
,
Bruscia
EM
, et al
.
Role for MKL1 in megakaryocytic maturation
.
Blood
.
2009
;
113
(
12
):
2826
-
2834
.
16.
Rahman
NT
,
Schulz
VP
,
Wang
L
, et al
.
MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis
.
Blood Adv
.
2018
;
2
(
20
):
2691
-
2703
.
17.
Descot
A
,
Rex-Haffner
M
,
Courtois
G
, et al
.
OTT-MAL is a deregulated activator of serum response factor-dependent gene expression
.
Mol Cell Biol
.
2008
;
28
(
20
):
6171
-
6181
.
18.
Lee
JH
,
Skalnik
DG
.
Rbm15-Mkl1 interacts with the Setd1b histone H3-Lys4 methyltransferase via a SPOC domain that is required for cytokine-independent proliferation
.
PLoS One
.
2012
;
7
(
8
):
e42965
.
19.
Mercher
T
,
Raffel
GD
,
Moore
SA
, et al
.
The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model
.
J Clin Invest
.
2009
;
119
(
4
):
852
-
864
.
20.
Yankova
E
,
Blackaby
W
,
Albertella
M
, et al
.
Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia
.
Nature
.
2021
;
593
(
7860
):
597
-
601
.
21.
Guirguis
AA
,
Ofir-Rosenfeld
Y
,
Knezevic
K
, et al
.
Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances antitumor immunity
.
Cancer Discov
.
2023
;
13
(
10
):
2228
-
2247
.
22.
Vichai
V
,
Kirtikara
K
.
Sulforhodamine B colorimetric assay for cytotoxicity screening
.
Nat Protoc
.
2006
;
1
(
3
):
1112
-
1116
.
23.
Pronk
CJH
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
24.
Xavier-Ferrucio
J
,
Scanlon
V
,
Li
X
, et al
.
Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice
.
Blood
.
2019
;
134
(
18
):
1547
-
1557
.
25.
Van Nostrand
EL
,
Pratt
GA
,
Shishkin
AA
, et al
.
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)
.
Nat Methods
.
2016
;
13
(
6
):
508
-
514
.
26.
Biancon
G
,
Joshi
P
,
Zimmer
JT
, et al
.
Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies
.
Mol Cell
.
2022
;
82
(
6
):
1107
-
1122.e7
.
27.
Biancon
G
,
Busarello
E
,
Joshi
P
,
Lesch
BJ
,
Halene
S
,
Tebaldi
T
.
Deconvolution of in vivo protein-RNA contacts using fractionated eCLIP-seq
.
STAR Protoc
.
2022
;
3
(
4
):
101823
.
28.
Krakau
S
,
Richard
H
,
Marsico
A
.
PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data
.
Genome Biol
.
2017
;
18
(
1
):
240
.
29.
Schofield
JA
,
Duffy
EE
,
Kiefer
L
,
Sullivan
MC
,
Simon
MD
.
TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
.
Nat Methods 2018
.
15:3.2018
;
15
(
3
):
221
-
225
.
30.
Vock
IW
,
Simon
MD
.
bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling
.
RNA
.
2023
;
29
(
7
):
958
-
976
.
31.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
32.
Umeda
M
,
Ma
J
,
Westover
T
, et al
.
A new genomic framework to categorize pediatric acute myeloid leukemia
.
Nat Genet
.
2024
;
56
(
2
):
281
-
293
.
33.
Kwon
N
,
Lu
Y-C
,
Thompson
EN
, et al
.
CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors
.
Blood
.
2024
;
144
(
17
):
1800
-
1812
.
34.
Busarello
E
,
Biancon
G
,
Cimignolo
I
, et al
.
Cell Marker Accordion: interpretable single-cell and spatial omics annotation in health and disease
.
Nat Commun
.
2025
;
16
:
5399
.
35.
Gíslason
MH
,
Demircan
GS
,
Prachar
M
, et al
.
BloodSpot 3.0: a database of gene and protein expression data in normal and malignant haematopoiesis
.
Nucleic Acids Res
.
2024
;
52
(
D1
):
D1138
-
D1142
.
36.
Gao
Y
,
Vasic
R
,
Song
Y
, et al
.
m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development
.
Immunity
.
2020
;
52
(
6
):
1007
-
1021.e8
.
37.
Sturgess
K
,
Yankova
E
,
Vijayabaskar
MS
, et al
.
Pharmacological inhibition of METTL3 impacts specific haematopoietic lineages
.
Leukemia
.
2023
;
37
(
10
):
2133
-
2137
.
38.
Smith
EC
,
Teixeira
AM
,
Chen
RC
, et al
.
Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation
.
Blood
.
2013
;
121
(
7
):
1094
-
1101
.
39.
Papayannopoulou
T
,
Nakamoto
B
,
Yokochi
T
,
Chait
A
,
Kannagi
R
.
Human erythroleukemia cell line (HEL) undergoes a drastic macrophage-like shift with TPA
.
Blood
.
1983
;
62
(
4
):
832
-
845
.
40.
Liang
Z
,
Ye
H
,
Ma
J
, et al
.
m6A-Atlas v2.0: updated resources for unraveling the N6-methyladenosine (m6A) epitranscriptome among multiple species
.
Nucleic Acids Res
.
2024
;
52
(
D1
):
D194
-
D202
.
41.
Xuan
J
,
Chen
L
,
Chen
Z
, et al
.
RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications
.
Nucleic Acids Res
.
2024
;
52
(
D1
):
D273
-
D284
.
42.
Luo
Z
,
Zhang
J
,
Fei
J
,
Ke
S
.
Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences
.
Nat Commun 2022
.
13:1. 2022
;
13
(
1
):
2720
.
43.
Ring
DB
,
Johnson
KW
,
Henriksen
EJ
, et al
.
Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo
.
Diabetes
.
2003
;
52
(
3
):
588
-
595
.
44.
Li
B
,
Orton
D
,
Neitzel
LR
, et al
.
Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors
.
Sci Signal
.
2017
;
10
(
485
):
eaak9916
.
45.
Zhan
T
,
Rindtorff
N
,
Boutros
M
.
Wnt signaling in cancer
.
Oncogene 2017
.
2016
;
36
(
11
):
1461
-
1473
.
46.
Le
Q
,
Hadland
B
,
Smith
JL
, et al
.
CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target
.
J Clin Invest
.
2022
;
132
(
22
):
e157101
.
47.
Gruber
TA
,
Larson Gedman
A
,
Zhang
J
, et al
.
An inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia
.
Cancer Cell
.
2012
;
22
(
5
):
683
-
697
.
48.
Smith
JL
,
Ries
RE
,
Hylkema
T
, et al
.
Comprehensive transcriptome profiling of cryptic CBFA2T3-GLIS2 fusion-positive AML defines novel therapeutic options – a COG and TARGET pediatric AML study
.
Clin Cancer Res
.
2020
;
26
(
3
):
726
-
737
.
49.
Wang
J
,
Yu
H
,
Dong
W
, et al
.
N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/β-catenin and Hippo signaling pathways
.
Gastroenterology
.
2023
;
164
(
6
):
990
-
1005
.
50.
Fukumoto
T
,
Zhu
H
,
Nacarelli
T
, et al
.
N6-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance
.
Cancer Res
.
2019
;
79
(
11
):
2812
-
2820
.
51.
Cao
G
,
Deng
Y
,
Chen
X
, et al
.
The fluorescent biosensor for detecting N6 methyladenine FzD5 mRNA and MazF activity
.
Anal Chim Acta
.
2021
;
1188
:
339185
.
52.
Pi
J
,
Wang
W
,
Ji
M
, et al
.
YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7
.
Cancer Res
.
2021
;
81
(
10
):
2651
-
2665
.
53.
Zhang
C
,
Scott
RL
,
Tunes
L
, et al
.
Cancer mutations rewire the RNA methylation specificity of METTL3-METTL14
.
Sci Adv
.
2024
;
10
(
51
):
eads4750
.
54.
Figueroa
DM
,
Darrow
EM
,
Chadwick
BP
.
Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat
.
Chromosome Res
.
2015
;
23
(
4
):
733
-
752
.
You do not currently have access to this content.
Sign in via your Institution