• We developed, to our knowledge, the first pooled CAR-T screening platform in an immunocompetent NHP model to directly compare CAR designs.

  • We identified MyD88-CD40 costimulatory domain as vastly superior to conventional domains in proliferation, trafficking, and persistence.

Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell malignancies; however, >60% of patients relapse within 1 year, often due to insufficient CAR-T persistence. Although mouse and primary cell models have been instrumental in advancing CAR-T therapy, they frequently fail to predict clinical outcomes, underscoring the need for more translationally relevant models. To address this limitation, we conducted, to our knowledge, the first systematic evaluation of CAR structure-function relationships in an immunocompetent nonhuman primate (NHP) model. We engineered an array of 20 CD20-targeted CARs with distinct combinations of hinge, transmembrane, and costimulatory domains. After ex vivo characterization, we administered pooled autologous CAR-T arrays to 3 NHPs and tracked CAR abundance longitudinally using a novel digital droplet polymerase chain reaction assay. Ex vivo, CAR-T cells incorporating the MyD88-CD40 costimulatory domain exhibited markedly distinct functional profiles, including increased activation, unique cytokine secretion, tonic signaling, and resistance to exhaustion. In vivo, MyD88-CD40 CARs expanded dramatically, comprising up to 100% of peripheral CAR-T cells and significantly outperforming canonical CD28- and 4-1BB–based CARs. This expansion was associated with robust B-cell depletion across all animals. MyD88-CD40 CARs, particularly those with a CD28 hinge and transmembrane domain, demonstrated superior trafficking to secondary lymphoid tissues and persistence through study end point, unlike other CARs, which waned by day 28. Our findings highlight the value of NHP models for screening CAR designs and identify MyD88-CD40 CARs as candidates with unmatched potency. The unique functional attributes conferred by this domain may provide key insights into features that drive enhanced CAR-T activity.

1.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
2.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
3.
Locke
FL
,
Miklos
DB
,
Jacobson
CA
, et al
.
Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma
.
N Engl J Med
.
2022
;
386
(
7
):
640
-
654
.
4.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
5.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al
.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet
.
2021
;
398
(
10299
):
491
-
502
.
6.
Roddie
C
,
Sandhu
KS
,
Tholouli
E
, et al
.
Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia
.
N Engl J Med
.
2024
;
391
(
23
):
2219
-
2230
.
7.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
8.
Rodriguez-Otero
P
,
Ailawadhi
S
,
Arnulf
B
, et al
.
Ide-cel or standard regimens in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2023
;
388
(
11
):
1002
-
1014
.
9.
Shah
NN
,
Fry
TJ
.
Mechanisms of resistance to CAR T cell therapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
6
):
372
-
385
.
10.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
11.
Myers
RM
,
Li
Y
,
Barz Leahy
A
, et al
.
Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia
.
J Clin Oncol
.
2021
;
39
(
27
):
3044
-
3055
.
12.
Lamble
AJ
,
Myers
RM
,
Taraseviciute
A
, et al
.
Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells
.
Blood Adv
.
2023
;
7
(
4
):
575
-
585
.
13.
Schultz
LM
,
Eaton
A
,
Baggott
C
, et al
.
Outcomes after nonresponse and relapse post-tisagenlecleucel in children, adolescents, and young adults with B-cell acute lymphoblastic leukemia
.
J Clin Oncol
.
2023
;
41
(
2
):
354
-
363
.
14.
Brudno
JN
,
Maric
I
,
Hartman
SD
, et al
.
T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma
.
J Clin Oncol
.
2018
;
36
(
22
):
2267
-
2280
.
15.
Shi
M
,
Wang
J
,
Huang
H
, et al
.
Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial
.
Nat Commun
.
2024
;
15
(
1
):
3371
.
16.
Wittibschlager
V
,
Bacher
U
,
Seipel
K
, et al
.
CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma
.
Int J Mol Sci
.
2023
;
24
(
6
):
5688
.
17.
Shiqi
L
,
Jiasi
Z
,
Lvzhe
C
, et al
.
Durable remission related to CAR-T persistence in R/R B-ALL and long-term persistence potential of prime CAR-T
.
Mol Ther Oncolytics
.
2023
;
29
:
107
-
117
.
18.
Jayaraman
J
,
Mellody
MP
,
Hou
AJ
, et al
.
CAR-T design: elements and their synergistic function
.
EBioMedicine
.
2020
;
58
:
102931
.
19.
Cappell
KM
,
Kochenderfer
JN
.
A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains
.
Nat Rev Clin Oncol
.
2021
;
18
(
11
):
715
-
727
.
20.
Selli
ME
,
Landmann
JH
,
Terekhova
M
, et al
.
Costimulatory domains direct distinct fates of CAR-driven T-cell dysfunction
.
Blood
.
2023
;
141
(
26
):
3153
-
3165
.
21.
Ying
Z
,
He
T
,
Wang
X
, et al
.
Parallel comparison of 4-1BB or CD28 co-stimulated CD19-targeted CAR-T cells for B cell non-Hodgkin's lymphoma
.
Mol Ther Oncolytics
.
2019
;
15
:
60
-
68
.
22.
Zhao
X
,
Yang
J
,
Zhang
X
, et al
.
Efficacy and safety of CD28- or 4-1BB-based CD19 CAR-T cells in B cell acute lymphoblastic leukemia
.
Mol Ther Oncolytics
.
2020
;
18
:
272
-
281
.
23.
Guercio
M
,
Orlando
D
,
Di Cecca
S
, et al
.
CD28.OX40 co-stimulatory combination is associated with long in vivo persistence and high activity of CAR.CD30 T-cells
.
Haematologica
.
2021
;
106
(
4
):
987
-
999
.
24.
Zhang
H
,
Li
F
,
Cao
J
, et al
.
A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity
.
Sci Transl Med
.
2021
;
13
(
578
):
eaba7308
.
25.
Tan
J
,
Jia
Y
,
Zhou
M
, et al
.
Chimeric antigen receptors containing the OX40 signalling domain enhance the persistence of T cells even under repeated stimulation with multiple myeloma target cells
.
J Hematol Oncol
.
2022
;
15
(
1
):
39
.
26.
Goodman
DB
,
Azimi
CS
,
Kearns
K
, et al
.
Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies
.
Sci Transl Med
.
2022
;
14
(
670
):
eabm1463
.
27.
Collinson-Pautz
MR
,
Chang
WC
,
Lu
A
, et al
.
Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies
.
Leukemia
.
2019
;
33
(
9
):
2195
-
2207
.
28.
Prinzing
B
,
Schreiner
P
,
Bell
M
,
Fan
Y
,
Krenciute
G
,
Gottschalk
S
.
MyD88/CD40 signaling retains CAR T cells in a less differentiated state
.
JCI Insight
.
2020
;
5
(
21
):
e136093
.
29.
Stein
MN
,
Dumbrava
EE
,
Teply
BA
, et al
.
PSCA-targeted BPX-601 CAR T cells with pharmacological activation by rimiducid in metastatic pancreatic and prostate cancer: a phase 1 dose escalation trial
.
Nat Commun
.
2024
;
15
(
1
):
10743
.
30.
Hudecek
M
,
Sommermeyer
D
,
Kosasih
PL
, et al
.
The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity
.
Cancer Immunol Res
.
2015
;
3
(
2
):
125
-
135
.
31.
Jonnalagadda
M
,
Mardiros
A
,
Urak
R
, et al
.
Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy
.
Mol Ther
.
2015
;
23
(
4
):
757
-
768
.
32.
Majzner
RG
,
Rietberg
SP
,
Sotillo
E
, et al
.
Tuning the antigen density requirement for CAR T-cell activity
.
Cancer Discov
.
2020
;
10
(
5
):
702
-
723
.
33.
Fujiwara
K
,
Tsunei
A
,
Kusabuka
H
,
Ogaki
E
,
Tachibana
M
,
Okada
N
.
Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold
.
Cells
.
2020
;
9
(
5
):
1182
.
34.
Li
N
,
Quan
A
,
Li
D
, et al
.
The IgG4 hinge with CD28 transmembrane domain improves V(H)H-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer
.
Nat Commun
.
2023
;
14
(
1
):
1986
.
35.
Seok
J
,
Warren
HS
,
Cuenca
AG
, et al
.
Genomic responses in mouse models poorly mimic human inflammatory diseases
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
9
):
3507
-
3512
.
36.
Parekh
C
,
Crooks
GM
.
Critical differences in hematopoiesis and lymphoid development between humans and mice
.
J Clin Immunol
.
2013
;
33
(
4
):
711
-
715
.
37.
Maynard
LH
,
Humbert
O
,
Peterson
CW
,
Kiem
HP
.
Genome editing in large animal models
.
Mol Ther
.
2021
;
29
(
11
):
3140
-
3152
.
38.
Taraseviciute
A
,
Tkachev
V
,
Ponce
R
, et al
.
Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates
.
Cancer Discov
.
2018
;
8
(
6
):
750
-
763
.
39.
Bui
JK
,
Starke
CE
,
Poole
NH
, et al
.
CD20 CAR T cells safely and reversibly ablate B cell follicles in a non-human primate model of HIV persistence
.
Mol Ther
.
2024
;
32
(
5
):
1238
-
1251
.
40.
Nicolai
CJ
,
Parker
MH
,
Qin
J
, et al
.
In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand
.
Blood
.
2024
;
144
(
9
):
977
-
987
.
41.
Kaminski
J
,
Fleming
RA
,
Alvarez-Calderon
F
, et al
.
B-cell-directed CAR T-cell therapy activates CD8+ cytotoxic CARneg bystander T cells in patients and nonhuman primates
.
Blood
.
2024
;
144
(
1
):
46
-
60
.
42.
Suhoski
MM
,
Golovina
TN
,
Aqui
NA
, et al
.
Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules
.
Mol Ther
.
2007
;
15
(
5
):
981
-
988
.
43.
Levy
CN
,
Hughes
SM
,
Roychoudhury
P
, et al
.
A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir
.
Cell Rep Med
.
2021
;
2
(
4
):
100243
.
44.
Zoutman
WH
,
Nell
RJ
,
Versluis
M
, et al
.
Accurate quantification of T cells by measuring loss of germline T-cell receptor loci with generic single duplex droplet digital PCR assays
.
J Mol Diagn
.
2017
;
19
(
2
):
236
-
243
.
45.
Wang
X
,
Chang
WC
,
Wong
CW
, et al
.
A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells
.
Blood
.
2011
;
118
(
5
):
1255
-
1263
.
46.
Rea
IM
,
McNerlan
SE
,
Alexander
HD
.
CD69, CD25, and HLA-DR activation antigen expression on CD3+ lymphocytes and relationship to serum TNF-alpha, IFN-gamma, and sIL-2R levels in aging
.
Exp Gerontol
.
1999
;
34
(
1
):
79
-
93
.
47.
Swiech
K
,
Malmegrim
KCR
,
Picanço-Castro
V
. Chimeric Antigen Receptor T Cells - Development and Production. (1st ed) .
Humana
;
2020
.
48.
Rosskopf
S
,
Leitner
J
,
Paster
W
, et al
.
A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies
.
Oncotarget
.
2018
;
9
(
25
):
17608
-
17619
.
49.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al
.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
50.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med
.
2020
;
26
(
12
):
1878
-
1887
.
51.
Kouro
T
,
Himuro
H
,
Sasada
T
.
Exhaustion of CAR T cells: potential causes and solutions
.
J Transl Med
.
2022
;
20
(
1
):
239
.
52.
Selli
ME
,
Landmann
JH
,
Arveseth
C
,
Singh
N
.
Inducing T cell dysfunction by chronic stimulation of CAR-engineered T cells targeting cancer cells in suspension cultures
.
STAR Protoc
.
2023
;
4
(
1
):
101954
.
53.
Salter
AI
,
Ivey
RG
,
Kennedy
JJ
, et al
.
Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function
.
Sci Signal
.
2018
;
11
(
544
):
eaat6753
.
54.
Maldini
CR
,
Ellis
GI
,
Riley
JL
.
CAR T cells for infection, autoimmunity and allotransplantation
.
Nat Rev Immunol
.
2018
;
18
(
10
):
605
-
616
.
55.
Perez
CR
,
Garmilla
A
,
Nilsson
A
, et al
.
Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence
.
Cell Syst
.
2025
;
16
(
5
):
101260
.
56.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med
.
2015
;
21
(
6
):
581
-
590
.
57.
Landoni
E
,
Fucá
G
,
Wang
J
, et al
.
Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling
.
Cancer Immunol Res
.
2021
;
9
(
4
):
441
-
453
.
58.
Singh
N
,
Frey
NV
,
Engels
B
, et al
.
Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells
.
Nat Med
.
2021
;
27
(
5
):
842
-
850
.
59.
Chen
J
,
Qiu
S
,
Li
W
, et al
.
Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness
.
Cell Res
.
2023
;
33
(
5
):
341
-
354
.
60.
Cosenza
M
,
Sacchi
S
,
Pozzi
S
.
Cytokine release syndrome associated with T-cell-based therapies for hematological malignancies: pathophysiology, clinical presentation, and treatment
.
Int J Mol Sci
.
2021
;
22
(
14
):
7652
.
61.
Norelli
M
,
Camisa
B
,
Barbiera
G
, et al
.
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells
.
Nat Med
.
2018
;
24
(
6
):
739
-
748
.
62.
Carlini
V
,
Noonan
DM
,
Abdalalem
E
, et al
.
The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions
.
Front Immunol
.
2023
;
14
:
1161067
.
63.
Batchu
RB
,
Gruzdyn
OV
,
Mahmud
EM
, et al
.
Inhibition of interleukin-10 in the tumor microenvironment can restore mesothelin chimeric antigen receptor T cell activity in pancreatic cancer in vitro
.
Surgery
.
2018
;
163
(
3
):
627
-
632
.
64.
Sullivan
KM
,
Jiang
X
,
Guha
P
, et al
.
Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases
.
Gut
.
2023
;
72
(
2
):
325
-
337
.
65.
Bai
Z
,
Feng
B
,
McClory
SE
, et al
.
Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission
.
Nature
.
2024
;
634
(
8034
):
702
-
711
.
You do not currently have access to this content.
Sign in via your Institution