• Genetic alteration of class I HLA genes is common in advanced cutaneous T-cell lymphoma but rarely affects total class I HLA expression.

  • Genetic events involving HLA in CTCL are often dynamic and subclonal.

Abstract

Abnormalities involving class I HLA are frequent in many lymphoma subtypes but have not yet been extensively studied in cutaneous T-cell lymphomas (CTCLs). We characterized the occurrence of class I HLA abnormalities in 65 patients with advanced mycosis fungoides or Sézary syndrome. Targeted DNA sequencing, including coverage of HLA loci, revealed at least 1 HLA abnormality in 26 of 65 patients (40%). Twelve unique somatic HLA mutations were identified across 9 patients, and loss of heterozygosity or biallelic loss of HLA was found to affect 24 patients. Although specific HLA alleles were commonly disrupted, these events did not associate with a decrease in the total class I HLA expression. Genetic events preferentially disrupted HLA alleles capable of presenting greater numbers of putative neoantigens. HLA abnormalities co-occurred with other genetic immune evasion events and were associated with worse progression-free survival. Single-cell analyses demonstrated that HLA abnormalities were frequently subclonal. Through analysis of serial samples, we observed that disrupting class I HLA events change dynamically over the disease course. The dynamics of HLA disruption are highlighted in a patient who received pembrolizumab and in whom resistance to pembrolizumab was associated with the elimination of an HLA mutation. Overall, our findings show that genomic class I HLA abnormalities are common in advanced CTCL and may be an important consideration in understanding the effects of immunotherapy in CTCL.

1.
Lesokhin
AM
,
Ansell
SM
,
Armand
P
, et al
.
Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study
.
J Clin Oncol
.
2016
;
34
(
23
):
2698
-
2704
.
2.
Khodadoust
MS
,
Rook
AH
,
Porcu
P
, et al
.
Pembrolizumab in relapsed and refractory mycosis fungoides and Sezary syndrome: a multicenter phase II study
.
J Clin Oncol
.
2020
;
38
(
1
):
20
-
28
.
3.
Bachy
E
,
Savage
KJ
,
Huang
H
, et al
.
Treating relapsed/refractory mature T- and NK-cell neoplasms with tislelizumab: a multicenter open-label phase 2 study
.
Blood Adv
.
2023
;
7
(
16
):
4435
-
4447
.
4.
Querfeld
C
,
Chen
L
,
Wu
X
, et al
.
Preliminary analysis demonstrates durvalumab (anti-PD-L1) & lenalidomide is superior to single-agent durvalumab (anti-PD-L1) in refractory/advanced cutaneous T cell lymphoma in a randomized phase 2 trial
.
Blood
.
2023
;
142
(
suppl 1
):
3077
.
5.
Choi
J
,
Goh
G
,
Walradt
T
, et al
.
Genomic landscape of cutaneous T cell lymphoma
.
Nat Genet
.
2015
;
47
(
9
):
1011
-
1019
.
6.
da Silva Almeida
AC
,
Abate
F
,
Khiabanian
H
, et al
.
The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome
.
Nat Genet
.
2015
;
47
(
12
):
1465
-
1470
.
7.
McGirt
LY
,
Jia
P
,
Baerenwald
DA
, et al
.
Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides
.
Blood
.
2015
;
126
(
4
):
508
-
519
.
8.
Prasad
A
,
Rabionet
R
,
Espinet
B
, et al
.
Identification of gene mutations and fusion genes in patients with Sezary syndrome
.
J Invest Dermatol
.
2016
;
136
(
7
):
1490
-
1499
.
9.
Ungewickell
A
,
Bhaduri
A
,
Rios
E
, et al
.
Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2
.
Nat Genet
.
2015
;
47
(
9
):
1056
-
1060
.
10.
Wang
L
,
Ni
X
,
Covington
KR
, et al
.
Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes
.
Nat Genet
.
2015
;
47
(
12
):
1426
-
1434
.
11.
Woollard
WJ
,
Pullabhatla
V
,
Lorenc
A
, et al
.
Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome
.
Blood
.
2016
;
127
(
26
):
3387
-
3397
.
12.
Nijland
M
,
Veenstra
RN
,
Visser
L
, et al
.
HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune checkpoint inhibitor therapy?
.
OncoImmunology
.
2017
;
6
(
4
):
e1295202
.
13.
Fangazio
M
,
Ladewig
E
,
Gomez
K
, et al
.
Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
22
):
e2104504118
.
14.
Challa-Malladi
M
,
Lieu
YK
,
Califano
O
, et al
.
Combined genetic inactivation of beta2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma
.
Cancer Cell
.
2011
;
20
(
6
):
728
-
740
.
15.
Pasqualucci
L
,
Trifonov
V
,
Fabbri
G
, et al
.
Analysis of the coding genome of diffuse large B-cell lymphoma
.
Nat Genet
.
2011
;
43
(
9
):
830
-
837
.
16.
Kataoka
K
,
Nagata
Y
,
Kitanaka
A
, et al
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
Nat Genet
.
2015
;
47
(
11
):
1304
-
1315
.
17.
Watatani
Y
,
Sato
Y
,
Miyoshi
H
, et al
.
Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling
.
Leukemia
.
2019
;
33
(
12
):
2867
-
2883
.
18.
Chang
LW
,
Patrone
CC
,
Yang
W
, et al
.
An integrated data resource for genomic analysis of cutaneous T-cell lymphoma
.
J Invest Dermatol
.
2018
;
138
(
12
):
2681
-
2683
.
19.
Park
J
,
Yang
J
,
Wenzel
AT
, et al
.
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E)
.
Blood
.
2017
;
130
(
12
):
1430
-
1440
.
20.
Jain
S
,
Van Scoyk
A
,
Morgan
EA
, et al
.
Targeted inhibition of CD47-SIRPalpha requires Fc-FcgammaR interactions to maximize activity in T-cell lymphomas
.
Blood
.
2019
;
134
(
17
):
1430
-
1440
.
21.
Chang
YT
,
Prompsy
P
,
Kimeswenger
S
, et al
.
MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides
.
Nat Commun
.
2024
;
15
(
1
):
752
.
22.
Murray
D
,
McMurray
JL
,
Eldershaw
S
, et al
.
Progression of mycosis fungoides occurs through divergence of tumor immunophenotype by differential expression of HLA-DR
.
Blood Adv
.
2019
;
3
(
4
):
519
-
530
.
23.
Liu
X
,
Jin
S
,
Hu
S
, et al
.
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma
.
Nat Commun
.
2022
;
13
(
1
):
1158
.
24.
Rindler
K
,
Jonak
C
,
Alkon
N
, et al
.
Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma
.
Mol Cancer
.
2021
;
20
(
1
):
124
.
25.
McGranahan
N
,
Rosenthal
R
,
Hiley
CT
, et al
.
Allele-specific HLA loss and immune escape in lung cancer evolution
.
Cell
.
2017
;
171
(
6
):
1259
-
1271.e11e1211
.
26.
Kim
S
,
Scheffler
K
,
Halpern
AL
, et al
.
Strelka2: fast and accurate calling of germline and somatic variants
.
Nat Methods
.
2018
;
15
(
8
):
591
-
594
.
27.
Benjamin
D
,
Sato
T
,
Cibulskis
K
,
Getz
G
,
Stewart
C
,
Lichtenstein
L
.
Calling somatic SNVs and indels with Mutect2
.
bioRxiv
.
Preprint posted online 2 December 2019
.
28.
Koboldt
DC
,
Zhang
Q
,
Larson
DE
, et al
.
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
.
Genome Res
.
2012
;
22
(
3
):
568
-
576
.
29.
Wang
K
,
Li
M
,
Hakonarson
H
.
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
.
Nucleic Acids Res
.
2010
;
38
(
16
):
e164
.
30.
Talevich
E
,
Shain
AH
,
Botton
T
,
Bastian
BC
.
CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing
.
PLoS Comput Biol
.
2016
;
12
(
4
):
e1004873
.
31.
Bolotin
DA
,
Poslavsky
S
,
Mitrophanov
I
, et al
.
MiXCR: software for comprehensive adaptive immunity profiling
.
Nat Methods
.
2015
;
12
(
5
):
380
-
381
.
32.
Shukla
SA
,
Rooney
MS
,
Rajasagi
M
, et al
.
Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes
.
Nat Biotechnol
.
2015
;
33
(
11
):
1152
-
1158
.
33.
Szolek
A
,
Schubert
B
,
Mohr
C
,
Sturm
M
,
Feldhahn
M
,
Kohlbacher
O
.
OptiType: precision HLA typing from next-generation sequencing data
.
Bioinformatics
.
2014
;
30
(
23
):
3310
-
3316
.
34.
Darby
CA
,
Stubbington
MJT
,
Marks
PJ
,
Martinez Barrio
A
,
Fiddes
IT
.
scHLAcount: allele-specific HLA expression from single-cell gene expression data
.
Bioinformatics
.
2020
;
36
(
12
):
3905
-
3906
.
35.
Robinson
J
,
Barker
DJ
,
Georgiou
X
,
Cooper
MA
,
Flicek
P
,
Marsh
SGE
.
IPD-IMGT/HLA database
.
Nucleic Acids Res
.
2020
;
48
(
D1
):
D948
-
D955
.
36.
Reynisson
B
,
Alvarez
B
,
Paul
S
,
Peters
B
,
Nielsen
M
.
NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
.
Nucleic Acids Res
.
2020
;
48
(
W1
):
W449
-
W454
.
37.
Su
T
,
Duran
GE
,
Kwang
AC
, et al
.
Single-cell RNA-sequencing reveals predictive features of response to pembrolizumab in Sezary syndrome
.
OncoImmunology
.
2022
;
11
(
1
):
2115197
.
38.
Cao
Y
,
Zhu
T
,
Zhang
P
, et al
.
Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors
.
Oncotarget
.
2016
;
7
(
50
):
83294
-
83307
.
39.
Wang
X
,
Zhang
T
,
Lu
Y
, et al
.
Comprehensive analysis of TP53 and CD58 mutations and identification of patients with inferior prognosis and enhanced immune escape in diffuse large B cell lymphoma
.
Blood
.
2022
;
140
(
suppl 1
):
9236
-
9237
.
40.
Lee
JH
,
Shklovskaya
E
,
Lim
SY
, et al
.
Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition
.
Nat Commun
.
2020
;
11
(
1
):
1897
.
41.
Sade-Feldman
M
,
Jiao
YJ
,
Chen
JH
, et al
.
Resistance to checkpoint blockade therapy through inactivation of antigen presentation
.
Nat Commun
.
2017
;
8
(
1
):
1136
.
42.
Gettinger
S
,
Choi
J
,
Hastings
K
, et al
.
Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer
.
Cancer Discov
.
2017
;
7
(
12
):
1420
-
1435
.
43.
Inozume
T
,
Yaguchi
T
,
Ariyasu
R
, et al
.
Analysis of the tumor reactivity of tumor-infiltrating lymphocytes in a metastatic melanoma lesion that lost major histocompatibility complex class I expression after anti-PD-1 therapy
.
J Invest Dermatol
.
2019
;
139
(
7
):
1490
-
1496
.
44.
Reichel
J
,
Chadburn
A
,
Rubinstein
PG
, et al
.
Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells
.
Blood
.
2015
;
125
(
7
):
1061
-
1072
.
45.
Chen
R
,
Zinzani
PL
,
Fanale
MA
, et al
.
Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
19
):
2125
-
2132
.
46.
Ansell
SM
,
Lesokhin
AM
,
Borrello
I
, et al
.
PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma
.
N Engl J Med
.
2015
;
372
(
4
):
311
-
319
.
47.
Roemer
MG
,
Advani
RH
,
Redd
RA
, et al
.
Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status
.
Cancer Immunol Res
.
2016
;
4
(
11
):
910
-
916
.
48.
Liu
Y
,
Cheng
Y
,
Xu
Y
, et al
.
Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers
.
Oncogene
.
2017
;
36
(
44
):
6143
-
6153
.
You do not currently have access to this content.
Sign in via your Institution