• Evidence of tumor-specific and/or terminally exhausted CD8+ T cells is absent in a longitudinally analyzed cohort of patients with NDMM.

Abstract

Dysregulation of the bone marrow (BM) niche in multiple myeloma (MM) alters the composition and state of resident immune cells, potentially impeding antitumor immunity. One common mechanism of immune inhibition in solid tumors is the induction of exhaustion in tumor-specific T cells. However, the extent of T-cell exhaustion is not well characterized in MM. As the specific mechanisms of immune evasion are critical for devising effective therapeutic strategies, we deeply profiled the CD8+ T-cell compartment of patients with newly diagnosed MM (NDMM) for evidence of T-cell activation and exhaustion. We applied single-cell multiomic sequencing and mass cytometry to longitudinal BM and peripheral blood (PB) samples taken from time points spanning from diagnosis to induction therapy, autologous stem cell transplant, and maintenance therapy. We identified an exhausted-like population that lacked several canonical exhaustion markers, was not significantly enriched in patients with NDMM, and consisted of small, nonpersistent clonotypes. We also observed an activated population with increased frequency in the PB of patients with NDMM exhibiting phenotypic and clonal features consistent with homeostatic, cytokine-driven activation. As an orthogonal measurement of T-cell exhaustion, we performed intracellular cytokine staining and found that patients with NDMM lacked functionally exhausted T cells. In summary, there was no evidence of “tumor-experienced” T cells displaying hallmarks of terminal exhaustion and/or antigen-driven activation/expansion in patients with NDMM at any time point.

1.
Cowan
AJ
,
Green
DJ
,
Kwok
M
, et al
.
Diagnosis and management of multiple myeloma: a review
.
JAMA
.
2022
;
327
(
5
):
464
-
477
.
2.
Joseph
NS
,
Kaufman
JL
,
Dhodapkar
MV
, et al
.
Long-term follow-up results of lenalidomide, bortezomib, and dexamethasone induction therapy and risk-adapted maintenance approach in newly diagnosed multiple myeloma
.
JCO
.
2020
;
38
(
17
):
1928
-
1937
.
3.
Grosbois
B
,
Decaux
O
,
Azais
I
,
Facon
T
,
Avet-Loiseau
H
.
Current treatment strategies for multiple myeloma
.
Eur J Intern Med
.
2002
;
13
(
2
):
85
-
95
.
4.
Chow
A
,
Perica
K
,
Klebanoff
CA
,
Wolchok
JD
.
Clinical implications of T cell exhaustion for cancer immunotherapy
.
Nat Rev Clin Oncol
.
2022
;
19
(
12
):
775
-
790
.
5.
Dolina
JS
,
Van Braeckel-Budimir
N
,
Thomas
GD
,
Salek-Ardakani
S
.
CD8+ T cell exhaustion in cancer
.
Front Immunol
.
2021
;
12
:
715234
.
6.
Hanada
K
,
Zhao
C
,
Gil-Hoyos
R
, et al
.
A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers
.
Cancer Cell
.
2022
;
40
(
5
):
479
-
493.e6
.
7.
Gupta
PK
,
Godec
J
,
Wolski
D
, et al
.
CD39 expression identifies terminally exhausted CD8+ T cells
.
PLoS Pathog
.
2015
;
11
(
10
):
e1005177
.
8.
Philip
M
,
Schietinger
A
.
CD8+ T cell differentiation and dysfunction in cancer
.
Nat Rev Immunol
.
2022
;
22
(
4
):
209
-
223
.
9.
Schietinger
A
,
Greenberg
PD
.
Tolerance and exhaustion: defining mechanisms of T cell dysfunction
.
Trends Immunol
.
2014
;
35
(
2
):
51
-
60
.
10.
García-Ortiz
A
,
Rodríguez-García
Y
,
Encinas
J
, et al
.
The role of tumor microenvironment in multiple myeloma development and progression
.
Cancers
.
2021
;
13
(
2
):
217
.
11.
Simoni
Y
,
Becht
E
,
Fehlings
M
, et al
.
Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates
.
Nature
.
2018
;
557
(
7706
):
575
-
579
.
12.
Hartmann
FJ
,
Simonds
EF
,
Vivanco
N
, et al
.
Scalable conjugation and characterization of immunoglobulins with stable mass isotope reporters for single-cell mass cytometry analysis
.
Methods Mol Biol
.
2019
;
1989
:
55
-
81
.
13.
Walz
S
,
Stickel
JS
,
Kowalewski
DJ
, et al
.
The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell–based immunotherapy
.
Blood
.
2015
;
126
(
10
):
1203
-
1213
.
14.
Anderson
LD
,
Cook
DR
,
Yamamoto
TN
,
Berger
C
,
Maloney
DG
,
Riddell
SR
.
Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma
.
Cancer Immunol Immunother
.
2011
;
60
(
7
):
985
-
997
.
15.
Spisek
R
,
Kukreja
A
,
Chen
L-C
, et al
.
Frequent and specific immunity to the embryonal stem cell–associated antigen SOX2 in patients with monoclonal gammopathy
.
J Exp Med
.
2007
;
204
(
4
):
831
-
840
.
16.
Kobold
S
,
Tams
S
,
Luetkens
T
, et al
.
Patients with multiple myeloma develop SOX2-specific autoantibodies after allogeneic stem cell transplantation
.
Clin Dev Immunol
.
2011
;
2011
:
302145
.
17.
Orenbuch
R
,
Filip
I
,
Comito
D
,
Shaman
J
,
Pe'er
I
,
Rabadan
R
.
arcasHLA: high-resolution HLA typing from RNAseq
.
Bioinformatics
.
2020
;
36
(
1
):
33
-
40
.
18.
Simoni
Y
,
Fehlings
M
,
Newell
EW
.
Multiplex MHC class I tetramer combined with intranuclear staining by mass cytometry
.
Methods Mol Biol
.
2019
;
1989
:
147
-
158
.
19.
Finck
R
,
Simonds
EF
,
Jager
A
, et al
.
Normalization of mass cytometry data with bead standards
.
Cytometry A
.
2013
;
83
(
5
):
483
-
494
.
20.
Chevrier
S
,
Crowell
HL
,
Zanotelli
VRT
,
Engler
S
,
Robinson
MD
,
Bodenmiller
B
.
Compensation of signal spillover in suspension and imaging mass cytometry
.
Cell Syst
.
2018
;
6
(
5
):
612
-
620.e5
.
21.
Wolf
FA
,
Angerer
P
,
Theis
FJ
.
SCANPY: large-scale single-cell gene expression data analysis
.
Genome Biol
.
2018
;
19
(
1
):
15
.
22.
Wolock
SL
,
Lopez
R
,
Klein
AM
.
Scrublet: computational identification of cell doublets in single-cell transcriptomic data
.
cels
.
2019
;
8
(
4
):
281
-
291.e9
.
23.
Sturm
G
,
Szabo
T
,
Fotakis
G
, et al
.
Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data
.
Bioinformatics
.
2020
;
36
(
18
):
4817
-
4818
.
24.
Gayoso
A
,
Steier
Z
,
Lopez
R
, et al
.
Joint probabilistic modeling of single-cell multi-omic data with totalVI
.
Nat Methods
.
2021
;
18
(
3
):
272
-
282
.
25.
Zheng
L
,
Qin
S
,
Si
W
, et al
.
Pan-cancer single-cell landscape of tumor-infiltrating T cells
.
Science
.
2021
;
374
(
6574
):
abe6474
.
26.
Virtanen
P
,
Gommers
R
,
Oliphant
TE
, et al
.
SciPy 1.0: fundamental algorithms for scientific computing in Python
.
Nat Methods
.
2020
;
17
(
3
):
261
-
272
.
27.
Newell
EW
,
Sigal
N
,
Bendall
SC
,
Nolan
GP
,
Davis
MM
.
Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes
.
Immunity
.
2012
;
36
(
1
):
142
-
152
.
28.
Moodie
Z
,
Dintwe
O
,
Sawant
S
, et al
.
Analysis of the HIV vaccine trials network 702 phase 2b–3 HIV-1 vaccine trial in South Africa assessing RV144 antibody and T-cell correlates of HIV-1 acquisition risk
.
J Infect Dis
.
2022
;
226
(
2
):
246
-
257
.
29.
Glass
MC
,
Glass
DR
,
Oliveria
J-P
, et al
.
Human IL-10-producing B cells have diverse states that are induced from multiple B cell subsets
.
Cell Rep
.
2022
;
39
(
3
):
110728
.
30.
van Galen
P
,
Hovestadt
V
,
Wadsworth Ii
MH
, et al
.
Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
.
Cell
.
2019
;
176
(
6
):
1265
-
1281.e24
.
31.
Song
Q
,
Hawkins
GA
,
Wudel
L
, et al
.
Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq
.
Cancer Med
.
2019
;
8
(
6
):
3072
-
3085
.
32.
Zhang
L
,
Yu
X
,
Zheng
L
, et al
.
Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
.
Nature
.
2018
;
564
(
7735
):
268
-
272
.
33.
Goncharov
M
,
Bagaev
D
,
Shcherbinin
D
, et al
.
VDJdb in the pandemic era: a compendium of T cell receptors specific for SARS-CoV-2
.
Nat Methods
.
2022
;
19
(
9
):
1017
-
1019
.
34.
Goronzy
JJ
,
Weyand
CM
.
Mechanisms underlying T cell ageing
.
Nat Rev Immunol
.
2019
;
19
(
9
):
573
-
583
.
35.
Ghazawi
FM
,
Faller
EM
,
Sugden
SM
,
Kakal
JA
,
MacPherson
PA
.
IL-7 downregulates IL-7Rα expression in human CD8 T cells by two independent mechanisms
.
Immunol Cell Biol
.
2013
;
91
(
2
):
149
-
158
.
36.
Becht
E
,
McInnes
L
,
Healy
J
, et al
.
Dimensionality reduction for visualizing single-cell data using UMAP
.
Nat Biotechnol
.
2019
;
37
(
1
):
38
-
44
.
37.
Sekine
T
,
Perez-Potti
A
,
Nguyen
S
, et al
.
TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells
.
Sci Immunol
.
2020
;
5
(
49
):
eaba7918
.
38.
Dhodapkar
MV
,
Krasovsky
J
,
Olson
K
.
T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
20
):
13009
-
13013
.
39.
Welters
C
,
Lammoglia Cobo
MF
,
Stein
CA
, et al
.
Immune phenotypes and target antigens of clonally expanded bone marrow T cells in treatment-naïve multiple myeloma
.
Cancer Immunol Res
.
2022
;
10
(
11
):
1407
-
1419
.
40.
Prabhala
RH
,
Pelluru
D
,
Fulciniti
M
, et al
.
Elevated IL-17 produced by Th17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma
.
Blood
.
2010
;
115
(
26
):
5385
-
5392
.
41.
Giannopoulos
K
,
Kaminska
W
,
Hus
I
,
Dmoszynska
A
.
The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma
.
Br J Cancer
.
2012
;
106
(
3
):
546
-
552
.
42.
Guillerey
C
,
Harjunpää
H
,
Carrié
N
, et al
.
TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma
.
Blood
.
2018
;
132
(
16
):
1689
-
1694
.
43.
Minnie
SA
,
Hill
GR
.
Autologous stem cell transplantation for myeloma: cytoreduction or an immunotherapy?
.
Front Immunol
.
2021
;
12
:
651288
.
44.
Minnie
SA
,
Kuns
RD
,
Gartlan
KH
, et al
.
Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade [published correction appears in Blood. 2019;134(21):1878]
.
Blood
.
2018
;
132
(
16
):
1675
-
1688
.
45.
Vuckovic
S
,
Minnie
SA
,
Smith
D
, et al
.
Bone marrow transplantation generates T cell–dependent control of myeloma in mice
.
J Clin Invest
.
2019
;
129
(
1
):
106
-
121
.
46.
Mittelbrunn
M
,
Kroemer
G
.
Hallmarks of T cell aging
.
Nat Immunol
.
2021
;
22
(
6
):
687
-
698
.
47.
Minnie
SA
,
Waltner
OG
,
Zhang
P
, et al
.
TIM-3+ CD8 T cells with a terminally exhausted phenotype retain functional capacity in hematological malignancies
.
Sci Immunol
.
2024
;
9
(
94
):
eadg1094
.
48.
Garfall
AL
,
Stadtmauer
EA
,
Hwang
W-T
, et al
.
Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma [published correction appears in JCI Insight. 2019;4(4):e127684]
.
JCI Insight
.
2018
;
3
(
8
):
e120505
.
49.
Abramson
HN
.
Immunotherapy of multiple myeloma: current status as prologue to the future
.
Int J Mol Sci
.
2023
;
24
(
21
):
15674
.
50.
Thommen
DS
,
Koelzer
VH
,
Herzig
P
, et al
.
A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade
.
Nat Med
.
2018
;
24
(
7
):
994
-
1004
.
51.
Au
L
,
Hatipoglu
E
,
Robert de Massy
M
, et al
.
Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma
.
Cancer Cell
.
2021
;
39
(
11
):
1497
-
1518.e11
.
52.
Herbst
RS
,
Soria
J-C
,
Kowanetz
M
, et al
.
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
.
Nature
.
2014
;
515
(
7528
):
563
-
567
.
53.
Bonaventura
P
,
Shekarian
T
,
Alcazer
V
, et al
.
Cold tumors: a therapeutic challenge for immunotherapy
.
Front Immunol
.
2019
;
10
:
168
.
You do not currently have access to this content.
Sign in via your Institution