• CART30 with high proportion of less-differentiated memory T cells favors expansion and long-term persistence of memory CART30 cells.

  • CART30 was used to treat 10 patients with refractory CD30+ lymphoma, with 50% experiencing durable complete responses.

Abstract

CD30-directed chimeric antigen receptor T-cell therapy (CART30) has limited efficacy in relapsed or refractory patients with CD30+ lymphoma, with a low proportion of durable responses. We have developed an academic CART30 cell product (HSP-CAR30) by combining strategies to improve performance. HSP-CAR30 targets a proximal epitope within the nonsoluble part of CD30, and the manufacturing process includes a modulation of ex vivo T-cell activation, as well as the addition of interleukin-21 (IL-21) to IL-7 and IL-15 to promote stemness of T cells. We translated HSP-CAR30 to a phase 1 clinical trial of 10 patients with relapsed/refractory classic Hodgkin lymphoma (HL) or CD30+ T-cell non-Hodgkin lymphoma. HSP-CAR30 was mainly composed of memory stem–like (TSCM-like) and central memory (TCM) CAR30+ T cells (87.5% ± 5%). No dose-limiting toxicities were detected. Six patients had grade 1 cytokine release syndrome, and no patient developed neurotoxicity. The overall response rate was 100%, and 5 of 8 patients with HL achieved complete remission (CR). An additional patient with HL achieved CR after a second HSP-CAR30 infusion. Remarkably, 60% of patients have ongoing CR after a mean follow-up of 34 months. CAR30+ T cells at expansion peak had a predominance of TSCM and TCM cells, and CAR30+ T cells remained detectable in 3 of 5 evaluable patients at least 12 months after infusion. Our study shows that selection of the epitope targeting CD30 and ex vivo preservation of less-differentiated memory T cells may enhance the efficacy of CART30 in patients with refractory HL. This trial is registered at www.clinicaltrials.gov (NCT04653649).

1.
Mohty
R
,
Dulery
R
,
Bazarbachi
AH
, et al
.
Latest advances in the management of classical Hodgkin lymphoma: the era of novel therapies
.
Blood Cancer J
.
2021
;
11
(
7
):
126
.
2.
Zhang
Y
,
Xing
Z
,
Mi
L
, et al
.
Novel agents for relapsed and refractory classical Hodgkin lymphoma: a review
.
Front Oncol
.
2022
;
12
:
929012
.
3.
Chen
R
,
Gopal
AK
,
Smith
SE
, et al
.
Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma
.
Blood
.
2016
;
128
(
12
):
1562
-
1566
.
4.
Ansell
SM
,
Bröckelmann
PJ
,
von Keudell
G
, et al
.
Nivolumab for relapsed/refractory classical Hodgkin lymphoma: 5-year survival from the pivotal phase 2 CheckMate 205 study
.
Blood Adv
.
2023
;
7
(
20
):
6266
-
6274
.
5.
O’Connor
OA
,
Bhagat
G
,
Ganapathi
K
, et al
.
Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to clinical practice
.
Clin Cancer Res
.
2014
;
20
(
20
):
5240
-
5254
.
6.
Vose
JM
,
Neumann
M
,
Harris
ME
.
International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes international T-cell lymphoma project
.
J Clin Oncol
.
2008
;
26
(
25
).
7.
Ramos
CA
,
Grover
NS
,
Beaven
AW
, et al
.
Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma
.
J Clin Oncol
.
2020
;
38
(
32
):
3794
-
3804
.
8.
Wang
CM
,
Wu
ZQ
,
Wang
Y
, et al
.
Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial
.
Clin Cancer Res
.
2017
;
23
(
5
):
1156
-
1166
.
9.
Ramos
CA
,
Ballard
B
,
Zhang
H
, et al
.
Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes
.
J Clin Invest
.
2017
;
127
(
9
):
3462
-
3471
.
10.
Brudno
JN
,
Natrakul
DA
,
Karrs
J
, et al
.
Transient responses and significant toxicities of anti-CD30 CAR T cells for CD30+ lymphomas: results of a phase 1 trial
.
Blood Adv
.
2024
;
8
(
3
):
802
-
814
.
11.
Horie
R
,
Watanabe
T
.
CD30: expression and function in health and disease
.
Semin Immunol
.
1998
;
10
(
6
):
457
-
470
.
12.
van der Weyden
CA
,
Pileri
SA
,
Feldman
AL
,
Whisstock
J
,
Prince
HM
.
Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions
.
Blood Cancer J
.
2017
;
7
(
9
):
e603
.
13.
Haso
W
,
Lee
DW
,
Shah
NN
, et al
.
Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia
.
Blood
.
2013
;
121
(
7
):
1165
-
1174
.
14.
Alvarez-Fernández
C
,
Escribà-Garcia
L
,
Vidal
S
,
Sierra
J
,
Briones
J
.
A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy
.
J Transl Med
.
2016
;
14
(
1
):
214
.
15.
Alvarez-Fernández
C
,
Escribà-Garcia
L
,
Caballero
AC
, et al
.
Memory stem T cells modified with a redesigned CD30-chimeric antigen receptor show an enhanced antitumor effect in Hodgkin lymphoma
.
Clin Transl Immunol
.
2021
;
10
(
4
):
e1268
.
16.
Caballero
AC
,
Escribà-Garcia
L
,
Alvarez-Fernández
C
,
Briones
J
.
CAR T-cell therapy predictive response markers in diffuse large B-cell lymphoma and therapeutic options after CART19 failure
.
Front Immunol
.
2022
;
13
:
904497
.
17.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al
.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
18.
Biasco
L
,
Izotova
N
,
Rivat
C
, et al
.
Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients
.
Nat Cancer
.
2021
;
2
(
6
):
629
-
642
.
19.
Locke
FL
,
Rossi
JM
,
Neelapu
SS
, et al
.
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
19
):
4898
-
4911
.
20.
Ayala Ceja
M
,
Khericha
M
,
Harris
CM
,
Puig-Saus
C
,
Chen
YY
.
CAR-T cell manufacturing: major process parameters and next-generation strategies
.
J Exp Med
.
2024
;
221
(
2
):
e20230903
.
21.
Arcangeli
S
,
Falcone
L
,
Camisa
B
, et al
.
Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients
.
Front Immunol
.
2020
;
11
:
1217
.
22.
Spolski
R
,
Leonard
WJ
.
Interleukin-21: a double-edged sword with therapeutic potential
.
Nat Rev Drug Discov
.
2014
;
13
(
5
):
379
-
395
.
23.
Tian
Y
,
Zajac
AJ
.
IL-21 and T cell differentiation: consider the context
.
Trends Immunol
.
2016
;
37
(
8
):
557
-
568
.
24.
Singh
H
,
Figliola
MJ
,
Dawson
MJ
, et al
.
Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies
.
Cancer Res
.
2011
;
71
(
10
):
3516
-
3527
.
25.
Younes
A
,
Hilden
P
,
Coiffier
B
, et al
.
International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017)
.
Ann Oncol
.
2017
;
28
(
7
):
1436
-
1447
.
26.
National Cancer Institute
. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0.
NIH Publication
;
2009
.
27.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
28.
DI Tommaso
P
,
Chatzou
M
,
Floden
EW
,
Barja
PP
,
Palumbo
E
,
Notredame
C
.
Nextflow enables reproducible computational workflows
.
Nat Biotechnol
.
2017
;
35
(
4
):
316
-
319
.
29.
Aken
BL
,
Ayling
S
,
Barrell
D
, et al
.
The Ensembl gene annotation system
.
Database
.
2016
;
2016
:
baw093
.
30.
Gattinoni
L
,
Lugli
E
,
Ji
Y
, et al
.
A human memory T cell subset with stem cell-like properties
.
Nat Med
.
2011
;
17
(
10
):
1290
-
1297
.
31.
Sabatino
M
,
Hu
J
,
Sommariva
M
, et al
.
Generation of clinical-grade CD19-specific CAR-modified CD81 memory stem cells for the treatment of human B-cell malignancies
.
Blood
.
2016
;
128
(
4
):
519
-
528
.
32.
Cieri
N
,
Camisa
B
,
Cocchiarella
F
, et al
.
IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors
.
Blood
.
2013
;
121
(
4
):
573
-
584
.
33.
Gattinoni
L
,
Speiser
DE
,
Lichterfeld
M
,
Bonini
C
.
T memory stem cells in health and disease
.
Nat Med
.
2017
;
23
(
1
):
18
-
27
.
34.
Lugli
E
,
Gattinoni
L
,
Roberto
A
, et al
.
Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells
.
Nat Protoc
.
2013
;
8
(
1
):
33
-
42
.
35.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
36.
Galletti
G
,
De Simone
G
,
Mazza
EMC
, et al
.
Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans
.
Nat Immunol
.
2020
;
21
(
12
):
1552
-
1562
.
37.
Im
SJ
,
Hashimoto
M
,
Gerner
MY
, et al
.
Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
.
Nature
.
2016
;
537
(
7620
):
417
-
421
.
38.
Wherry
EJ
,
Ha
SJ
,
Kaech
SM
, et al
.
Molecular signature of CD8+ T cell exhaustion during chronic viral infection
.
Immunity
.
2007
;
27
(
4
):
670
-
684
.
39.
Radens
CM
,
Blake
D
,
Jewell
P
,
Barash
Y
,
Lynch
KW
.
Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing
.
RNA
.
2020
;
26
(
10
):
1320
-
1333
.
40.
Nagata
S
,
Ise
T
,
Pastan
I
.
Fc receptor-like 3 protein expressed on IL-2 nonresponsive subset of human regulatory T cells
.
J Immunol
.
2009
;
182
(
12
):
7518
-
7526
.
41.
Bhairavabhotla
R
,
Kim
YC
,
Glass
DD
, et al
.
Transcriptome profiling of human FoxP3+ regulatory T cells
.
Hum Immunol
.
2016
;
77
(
2
):
201
-
213
.
42.
Ghilardi
G
,
Paruzzo
L
,
Svoboda
J
, et al
.
Bendamustine lymphodepletion before axicabtagene ciloleucel is safe and associates with reduced inflammatory cytokines
.
Blood Adv
.
2024
;
8
(
3
):
653
-
666
.
43.
Nagata
S
,
Ise
T
,
Onda
M
, et al
.
Cell membrane-specific epitopes on CD30: potentially superior targets for immunotherapy
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
22
):
7946
-
7951
.
44.
Hansen
HP
,
Recke
A
,
Reineke
U
, et al
.
The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5
.
Faseb J
.
2004
;
18
(
7
):
893
-
895
.
45.
Josimovic-Alasevic
O
,
Dürkop
H
,
Schwarting
R
,
Backé
E
,
Stein
H
,
Diamantstein
T
.
Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo, I: partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay
.
Eur J Immunol
.
1989
;
19
(
1
):
157
-
162
.
46.
Schirrmann
T
,
Steinwand
M
,
Wezler
X
,
Ten Haaf
A
,
Tur
MK
,
Barth
S
.
CD30 as a therapeutic target for lymphoma
.
BioDrugs
.
2014
;
28
(
2
):
181
-
209
.
47.
Rochman
Y
,
Spolski
R
,
Leonard
WJ
.
New insights into the regulation of T cells by γc family cytokines
.
Nat Rev Immunol
.
2009
;
9
(
7
):
480
-
490
.
48.
Zeng
R
,
Spolski
R
,
Finkelstein
SE
, et al
.
Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function
.
J Exp Med
.
2005
;
201
(
1
):
139
-
148
.
49.
Chan
JD
,
Scheffler
CM
,
Munoz
I
, et al
.
FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy
.
Nature
.
2024
;
629
(
8010
):
201
-
210
.
50.
Doan
AE
,
Mueller
KP
,
Chen
AY
, et al
.
FOXO1 is a master regulator of memory programming in CAR T cells
.
Nature
.
2024
;
629
(
8010
):
211
-
218
.
51.
Zhu
Z
,
Lou
G
,
Teng
X-L
, et al
.
FOXP1 and KLF2 reciprocally regulate checkpoints of stem-like to effector transition in CAR T cells
.
Nat Immunol
.
2024
;
25
(
1
):
117
-
128
.
52.
Romain
G
,
Strati
P
,
Rezvan
A
, et al
.
Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses
.
J Clin Invest
.
2022
;
132
(
17
):
e159402
.
53.
Abdul Razak
FR
,
Diepstra
A
,
Visser
L
,
van den Berg
A
.
CD58 mutations are common in Hodgkin lymphoma cell lines and loss of CD58 expression in tumor cells occurs in Hodgkin lymphoma patients who relapse
.
Genes Immun
.
2016
;
17
(
6
):
363
-
366
.
54.
Arcangeli
S
,
Bove
C
,
Mezzanotte
C
, et al
.
CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome
.
J Clin Invest
.
2022
;
132
(
12
):
e150807
.
55.
Rezvan
A
,
Romain
G
,
Fathi
M
, et al
.
Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling
.
Nat Cancer
.
2024
;
5
(
7
):
1010
-
1023
.
56.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
57.
Talleur
AC
,
Qudeimat
A
,
Métais
JY
, et al
.
Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL
.
Blood Adv
.
2022
;
6
(
21
):
5737
-
5749
.
58.
Das
RK
,
Vernau
L
,
Grupp
SA
,
Barrett
DM
.
Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers
.
Cancer Discov
.
2019
;
9
(
4
):
492
-
499
.
59.
Locke
FL
,
Filosto
S
,
Chou
J
, et al
.
Impact of tumor microenvironment on efficacy of anti-CD19 CAR T cell therapy or chemotherapy and transplant in large B cell lymphoma
.
Nat Med
.
2024
;
30
(
2
):
507
-
518
.
You do not currently have access to this content.
Sign in via your Institution