• GCB-DLBCLs depend on DOT1L and EZH2, and combined targeting provides an alternative differentiation-based therapy.

  • DOT1L and EZH2 cooperatively repress PRC2 target genes to maintain the proproliferative germinal center B-cell identity of DLBCL.

Abstract

Differentiation of antigen-activated B cells into proproliferative germinal center (GC) B cells depends on the activity of the transcription factors myelocytoma (MYC) and B-cell lymphoma 6 (BCL6), and the epigenetic writers disruptor of telomeric silencing 1-like (DOT1L) and enhancer of zeste homolog 2 (EZH2). GCB-like diffuse large B-cell lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2. Mechanistically, inhibiting both enzymes led to enhanced derepression of polycomb repressive complex 2 target genes compared with EZH2 single treatment, along with the upregulation of BCL6 target genes and suppression of MYC target genes. The sum of all these alterations results in a “cell identity crisis,” wherein GCB-DLBCLs lose their proproliferative GC identity and partially undergo plasma cell differentiation, a state associated with poor survival. In support of this model, combined epidrugging of DOT1L and EZH2 prohibited the outgrowth of human GCB-DLBCL xenografts in vivo. We conclude that the malignant behavior of GCB-DLBCLs strongly depends on DOT1L and EZH2 and that combined targeting of both epigenetic writers may provide an alternative differentiation-based treatment modality for GCB-DLBCL.

1.
Pasqualucci
L
,
Dalla-Favera
R
.
Genetics of diffuse large B-cell lymphoma
.
Blood
.
2018
;
131
(
21
):
2307
-
2319
.
2.
Avancena
P
,
Song
T
,
Yao
Y
, et al
.
The magnitude of germinal center reactions is restricted by a fixed number of preexisting niches
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
30
):
e2100576118-10
.
3.
Roco
JA
,
Mesin
L
,
Binder
SC
, et al
.
Class-switch recombination occurs infrequently in germinal centers
.
Immunity
.
2019
;
51
(
2
):
337
-
350.e7
.
4.
Di Noia
JM
,
Neuberger
MS
.
Molecular mechanisms of antibody somatic hypermutation
.
Annu Rev Biochem
.
2007
;
76
(
1
):
1
-
22
.
5.
Inoue
T
,
Kurosaki
T
.
Memory B cells
.
Nat Rev Immunol
.
2024
;
24
(
1
):
5
-
17
.
6.
Miao
Y
,
Medeiros
LJ
,
Li
Y
,
Li
J
,
Young
KH
.
Genetic alterations and their clinical implications in DLBCL
.
Nat Rev Clin Oncol
.
2019
;
16
(
10
):
634
-
652
.
7.
Crump
M
,
Neelapu
SS
,
Farooq
U
, et al
.
Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study
.
Blood
.
2017
;
130
(
16
):
1800
-
1808
.
8.
Johnson
NA
,
Slack
GW
,
Savage
KJ
, et al
.
Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone
.
J Clin Oncol
.
2012
;
30
(
28
):
3452
-
3459
.
9.
Barrans
S
,
Crouch
S
,
Smith
A
, et al
.
Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab
.
J Clin Oncol
.
2010
;
28
(
20
):
3360
-
3365
.
10.
Velichutina
I
,
Shaknovich
R
,
Geng
H
, et al
.
EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis
.
Blood
.
2010
;
116
(
24
):
5247
-
5255
.
11.
Béguelin
W
,
Popovic
R
,
Teater
M
, et al
.
EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
.
Cancer Cell
.
2013
;
23
(
5
):
677
-
692
.
12.
Scharer
CD
,
Barwick
BG
,
Guo
M
,
Bally
APR
,
Boss
JM
.
Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs
.
Nat Commun
.
2018
;
9
(
1
):
1698
.
13.
Sneeringer
CJ
,
Scott
MP
,
Kuntz
KW
, et al
.
Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
49
):
20980
-
20985
.
14.
Bödör
C
,
Grossmann
V
,
Popov
N
, et al
.
EZH2 mutations are frequent and represent an early event in follicular lymphoma
.
Blood
.
2013
;
122
(
18
):
3165
-
3168
.
15.
McCabe
MT
,
Ott
HM
,
Ganji
G
, et al
.
EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations
.
Nature
.
2012
;
492
(
7427
):
108
-
112
.
16.
Morschhauser
F
,
Tilly
H
,
Chaidos
A
, et al
.
Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2020
;
21
(
11
):
1433
-
1442
.
17.
Aslam
MA
,
Alemdehy
MF
,
Kwesi-Maliepaard
EM
, et al
.
Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation
.
EMBO Rep
.
2021
;
22
(
2
):
e51184
. 21.
18.
Kealy
L
,
Di Pietro
A
,
Hailes
L
, et al
.
The histone methyltransferase DOT1L is essential for humoral immune responses
.
Cell Rep
.
2020
;
33
(
11
):
108504
.
19.
Stein
EM
,
Garcia-Manero
G
,
Rizzieri
DA
, et al
.
The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia
.
Blood
.
2018
;
131
(
24
):
2661
-
2669
.
20.
Stauffer
F
,
Weiss
A
,
Scheufler
C
, et al
.
New potent DOT1L inhibitors for in vivo evaluation in mouse
.
ACS Med Chem Lett
.
2019
;
10
(
12
):
1655
-
1660
.
21.
Daigle
SR
,
Olhava
EJ
,
Therkelsen
CA
, et al
.
Potent inhibition of DOT1L as treatment of MLL-fusion leukemia
.
Blood
.
2013
;
122
(
6
):
1017
-
1025
.
22.
Chou
TC
.
Drug combination studies and their synergy quantification using the chou-talalay method
.
Cancer Res
.
2010
;
70
(
2
):
440
-
446
.
23.
Jourdan
M
,
Caraux
A
,
De Vos
J
, et al
.
An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization
.
Blood
.
2009
;
114
(
25
):
5173
-
5181
.
24.
Jourdan
M
,
Caraux
A
,
Caron
G
, et al
.
Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation
.
J Immunol
.
2011
;
187
(
8
):
3931
-
3941
.
25.
Hänzelmann
S
,
Castelo
R
,
Guinney
J
.
GSVA: gene set variation analysis for microarray and RNA-Seq data
.
BMC Bioinf
.
2013
;
14
:
7
.
26.
Ewels
PA
,
Peltzer
A
,
Fillinger
S
, et al
.
The nf-core framework for community-curated bioinformatics pipelines
.
Nat Biotechnol
.
2020
;
38
(
3
):
276
-
278
.
27.
Massoni-Badosa
R
,
Aguilar-Fernández
S
,
Nieto
JC
, et al
.
An atlas of cells in the human tonsil
.
Immunity
.
Published online 2024
;
57
(
2
):
379
-
399.e18
.
28.
Chory
EJ
,
Calarco
JP
,
Hathaway
NA
,
Bell
O
,
Neel
DS
,
Crabtree
GR
.
Nucleosome turnover regulates histone methylation patterns over the genome
.
Mol Cell
.
2019
;
73
(
1
):
61
-
72.e3
.
29.
Ramaglia
M
,
D’Angelo
V
,
Iannotta
A
, et al
.
High EZH2 expression is correlated to metastatic disease in pediatric soft tissue sarcomas
.
Cancer Cell Int
.
2016
;
16
(
1
):
59
.
30.
Mohammad
F
,
Weissmann
S
,
Leblanc
B
, et al
.
EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas
.
Nat Med
.
2017
;
23
(
4
):
483
-
492
.
31.
Kong
SH
,
Ma
L
,
Yuan
Q
, et al
.
Inhibition of EZH2 alleviates SAHA-induced senescence-associated secretion phenotype in small cell lung cancer cells
.
Cell Death Discov
.
2023
;
9
(
1
):
289
.
32.
Malyutina
A
,
Majumder
MM
,
Wang
W
,
Pessia
A
,
Heckman
CA
,
Tang
J
.
Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer
.
PLoS Comput Biol
.
2019
;
15
(
5
):
e1006752-19
.
33.
Fernandes Neto
JM
,
Nadal
E
,
Bosdriesz
E
, et al
.
Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours
.
Nat Commun
.
2020
;
11
(
1
):
3157
.
34.
Chou
TC
.
Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies
.
Pharmacol Rev
.
2006
;
58
(
3
):
621
-
681
.
35.
Polmear
J
,
Hailes
L
,
Olshansky
M
, et al
.
Targeting BMI-1 to deplete antibody-secreting cells in autoimmunity
.
Clin & Trans Imm
.
2023
;
12
(
10
):
e1470
.
36.
Di Pietro
A
,
Polmear
J
,
Cooper
L
, et al
.
Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection
.
Nat Immunol
.
2022
;
23
(
1
):
86
-
98
.
37.
Béguelin
W
,
Teater
M
,
Gearhart
MD
, et al
.
EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis
.
Cancer Cell
.
2016
;
30
(
2
):
197
-
213
.
38.
Bernstein
BE
,
Mikkelsen
TS
,
Xie
X
, et al
.
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
.
Cell
.
2006
;
125
(
2
):
315
-
326
.
39.
Margueron
R
,
Reinberg
D
.
The polycomb complex PRC2 and its mark in life
.
Nature
.
2011
;
469
(
7330
):
343
-
349
.
40.
Béguelin
W
,
Rivas
MA
,
Calvo Fernández
MT
, et al
.
EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop
.
Nat Commun
.
2017
;
8
(
1
):
877
. 16.
41.
Verstegen
NJ
,
Pollastro
S
,
Unger
PPA
, et al
.
Single-cell analysis reveals dynamics of human B cell differentiation and identifies novel B and antibody-secreting cell intermediates
.
Elife
.
2023
;
12
:
e83578
.
42.
Mondello
P
,
Tadros
S
,
Teater
M
, et al
.
Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
440
-
459
.
43.
Herviou
L
,
Jourdan
M
,
Martinez
AM
,
Cavalli
G
,
Moreaux
J
.
EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation
.
Leukemia
.
2019
;
33
(
8
):
2047
-
2060
.
44.
Aversa
G
,
Punnonen
J
,
Cocks
BG
, et al
.
An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors
.
J Exp Med
.
1993
;
178
(
6
):
2213
-
2218
.
45.
Finney
J
,
Kelsoe
G
.
IL-2 requirement for human plasma cell generation: coupling di erentiation and proliferation by enhancing MAPK–ERK signaling
.
J Immunol
.
2021
;
207
(
5
):
1478
-
1492
.
46.
Hatzi
K
,
Melnick
A
.
Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis
.
Trends Mol Med
.
2014
;
20
(
6
):
343
-
352
.
47.
Dominguez-Sola
D
,
Victora
GD
,
Ying
CY
, et al
.
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry
.
Nat Immunol
.
2012
;
13
(
11
):
1083
-
1091
.
48.
Calado
DP
,
Sasaki
Y
,
Godinho
SA
, et al
.
The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers
.
Nat Immunol
.
2012
;
13
(
11
):
1092
-
1100
.
49.
Perner
F
,
Gadrey
JY
,
Xiong
Y
, et al
.
Novel inhibitors of the histone methyltransferase DOT1L show potent antileukemic activity in patient-derived xenografts
.
Blood
.
2020
;
136
(
17
):
1983
-
1988
.
50.
Pfreundschuh
M
,
Schubert
J
,
Ziepert
M
, et al
.
Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60)
.
Lancet Oncol
.
2008
;
9
(
2
):
105
-
116
.
51.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
52.
Hong
J
,
Woo
HS
,
Kim
H
, et al
.
Anemia as a useful biomarker in patients with diffuse large B-cell lymphoma treated with R-CHOP immunochemotherapy
.
Cancer Sci
.
2014
;
105
(
12
):
1569
-
1575
.
53.
Sarkozy
C
,
Morschhauser
F
,
Dubois
S
, et al
.
A LYSA phase Ib study of tazemetostat (EPZ-6438) plus R-CHOP in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) with poor prognosis features
.
Clin Cancer Res
.
2020
;
26
(
13
):
3145
-
3153
.
54.
Tisi
MC
,
Bozzoli
V
,
Giachelia
M
, et al
.
Anemia in diffuse large B-cell non-Hodgkin lymphoma: the role of interleukin-6, hepcidin and erythropoietin
.
Leuk Lymphoma
.
2014
;
55
(
2
):
270
-
275
.
55.
Loh
CH
,
Veenstra
GJC
.
The role of polycomb proteins in cell lineage commitment and embryonic development
.
Epigenomes
.
2022
;
6
(
3
):
23
.
56.
German
B
,
Ellis
L
.
Polycomb directed cell fate decisions in development and cancer
.
Epigenomes
.
2022
;
6
(
3
):
28
-
30
.
57.
Sparbier
CE
,
Gillespie
A
,
Gomez
J
, et al
.
Targeting menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes
.
Nat Cell Biol
.
2023
;
25
(
2
):
258
-
272
.
58.
Hanahan
D
.
Hallmarks of cancer: new dimensions
.
Cancer Discov
.
2022
;
12
(
1
):
31
-
46
.
59.
Kim
KH
,
Roberts
CWM
.
Targeting EZH2 in cancer
.
Nat Med
.
2016
;
22
(
2
):
128
-
134
.
60.
Eich
ML
,
Athar
M
,
Ferguson
JE
,
Varambally
S
.
EZH2-targeted therapies in cancer: hype or a reality
.
Cancer Res
.
2020
;
80
(
24
):
5449
-
5458
.
61.
Alexandrova
E
,
Salvati
A
,
Pecoraro
G
, et al
.
Histone methyltransferase DOT1L as a promising epigenetic target for treatment of solid tumors
.
Front Genet
.
2022
;
13
:
864612
.
62.
Edgar
R
,
Domrachev
M
,
Lash
AE
.
Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
.
Nucleic Acids Res
.
2002
;
30
(
1
):
207
-
210
.
You do not currently have access to this content.
Sign in via your Institution