• AMBRA1 plays a crucial role in the autophagic clearance of free α-globin in β-thalassemia.

  • Mutations in AMBRA1 disrupt the free α-globin autophagy process, leading to an exacerbation of β-thalassemia severity.

Abstract

Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear. In this study, we systematically investigated the relationship between variants in ATGs and disease phenotypes in a cohort of 1022 patients with β-thalassemia, identifying 4 missense mutations in the autophagy and beclin 1 regulator 1 (AMBRA1) gene. Disruption of the Ambra1 gene in β-thalassemic mice was found to reduce autophagic clearance of α-globin in red blood cell precursors, exacerbating disease phenotypes. Functional characterization of the AMBRA1 gene and these mutations in patient-derived CD34+ cells, edited human umbilical cord blood–derived erythroid progenitor 2 (HUDEP-2) cells, and engineered HUDEP-2 β-thalassemic cells confirmed that AMBRA1 facilitates the autophagic clearance of free α-globin in human erythroid cells. Functional studies demonstrated that AMBRA1 missense mutants destabilize Unc-51-like kinase 1 protein, inhibit light chain 3 protein lipidation, and subsequently hinder autophagic flux, leading to increased α-globin deposition. Additionally, these mutations were associated with erythrotoxic effects in vitro, including increased intracellular reactive oxygen species levels, higher apoptosis rates, and impaired erythroid differentiation and maturation. This study sheds light on the molecular association between mutations in ATGs and the exacerbation of β-thalassemia, highlighting the potential role of the AMBRA1 gene as a promising diagnostic and therapeutic target for β-hemoglobinopathies.

1.
Kattamis
A
,
Kwiatkowski
JL
,
Aydinok
Y
.
Thalassaemia
.
Lancet
.
2022
;
399
(
10343
):
2310
-
2324
.
2.
Mettananda
S
,
Gibbons
RJ
,
Higgs
DR
.
α-Globin as a molecular target in the treatment of β-thalassemia
.
Blood
.
2015
;
125
(
24
):
3694
-
3701
.
3.
Tesio
N
,
Bauer
DE
.
Molecular basis and genetic modifiers of thalassemia
.
Hematol Oncol Clin North Am
.
2023
;
37
(
2
):
273
-
299
.
4.
Bao
X
,
Zhang
X
,
Wang
L
, et al
.
Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia
.
Am J Hum Genet
.
2021
;
108
(
4
):
709
-
721
.
5.
Gong
Y
,
Zhang
X
,
Zhang
Q
, et al
.
A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia
.
Blood
.
2021
;
137
(
12
):
1652
-
1657
.
6.
Lu
HY
,
Orkin
SH
,
Sankaran
VG
.
Fetal hemoglobin regulation in beta-thalassemia
.
Hematol Oncol Clin North Am
.
2023
;
37
(
2
):
301
-
312
.
7.
Qin
K
,
Lan
X
,
Huang
P
, et al
.
Molecular basis of polycomb group protein-mediated fetal hemoglobin repression
.
Blood
.
2023
;
141
(
22
):
2756
-
2770
.
8.
Premawardhena
A
,
Fisher
CA
,
Olivieri
NF
, et al
.
A novel molecular basis for beta thalassemia intermedia poses new questions about its pathophysiology
.
Blood
.
2005
;
106
(
9
):
3251
-
3255
.
9.
Feng
R
,
Mayuranathan
T
,
Huang
P
, et al
.
Activation of γ-globin expression by hypoxia-inducible factor 1α
.
Nature
.
2022
;
610
(
7933
):
783
-
790
.
10.
Chaand
M
,
Fiore
C
,
Johnston
B
, et al
.
Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor
.
Commun Biol
.
2023
;
6
(
1
):
640
.
11.
Mettananda
S
,
Fisher
CA
,
Sloane-Stanley
JA
, et al
.
Selective silencing of α-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of β-thalassemia
.
Haematologica
.
2017
;
102
(
3
):
e80
-
e84
.
12.
Kim
KH
,
Lee
MS
.
Autophagy--a key player in cellular and body metabolism
.
Nat Rev Endocrinol
.
2014
;
10
(
6
):
322
-
337
.
13.
Mizushima
N
,
Komatsu
M
.
Autophagy: renovation of cells and tissues
.
Cell
.
2011
;
147
(
4
):
728
-
741
.
14.
Boya
P
,
Reggiori
F
,
Codogno
P
.
Emerging regulation and functions of autophagy
.
Nat Cell Biol
.
2013
;
15
(
7
):
713
-
720
.
15.
Yamamoto
H
,
Zhang
S
,
Mizushima
N
.
Autophagy genes in biology and disease
.
Nat Rev Genet
.
2023
;
24
(
6
):
382
-
400
.
16.
Tamargo-Gómez
I
,
Fernández
Á F
,
Mariño
G
.
Pathogenic single nucleotide polymorphisms on autophagy-related genes
.
Int J Mol Sci
.
2020
;
21
(
21
):
8196
.
17.
Lavoie
S
,
Conway
KL
,
Lassen
KG
, et al
.
The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response
.
Elife
.
2019
;
8
:
e39982
.
18.
Lassen
KG
,
Kuballa
P
,
Conway
KL
, et al
.
Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
21
):
7741
-
7746
.
19.
Rioux
JD
,
Xavier
RJ
,
Taylor
KD
, et al
.
Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
.
Nat Genet
.
2007
;
39
(
5
):
596
-
604
.
20.
Hampe
J
,
Franke
A
,
Rosenstiel
P
, et al
.
A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
.
Nat Genet
.
2007
;
39
(
2
):
207
-
211
.
21.
Grosso
R
,
Fader
CM
,
Colombo
MI
.
Autophagy: a necessary event during erythropoiesis
.
Blood Rev
.
2017
;
31
(
5
):
300
-
305
.
22.
Mortensen
M
,
Ferguson
DJ
,
Edelmann
M
, et al
.
Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
2
):
832
-
837
.
23.
Lithanatudom
P
,
Wannatung
T
,
Leecharoenkiat
A
,
Svasti
S
,
Fucharoen
S
,
Smith
DR
.
Enhanced activation of autophagy in β-thalassemia/Hb E erythroblasts during erythropoiesis
.
Ann Hematol
.
2011
;
90
(
7
):
747
-
758
.
24.
Chaichompoo
P
,
Svasti
S
,
Smith
DR
.
The roles of mitophagy and autophagy in ineffective erythropoiesis in β-thalassemia
.
Int J Mol Sci
.
2022
;
23
(
18
):
10811
.
25.
Chaichompoo
P
,
Nithipongvanitch
R
,
Kheansaard
W
, et al
.
Increased autophagy leads to decreased apoptosis during β-thalassaemic mouse and patient erythropoiesis
.
Sci Rep
.
2022
;
12
(
1
):
18628
.
26.
Khandros
E
,
Thom
CS
,
D'Souza
J
,
Weiss
MJ
.
Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia
.
Blood
.
2012
;
119
(
22
):
5265
-
5275
.
27.
Khandros
E
,
Weiss
MJ
.
Protein quality control during erythropoiesis and hemoglobin synthesis
.
Hematol Oncol Clin North Am
.
2010
;
24
(
6
):
1071
-
1088
.
28.
Lechauve
C
,
Keith
J
,
Khandros
E
, et al
.
The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia
.
Sci Transl Med
.
2019
;
11
(
506
):
eaav4881
.
29.
Keith
J
,
Christakopoulos
GE
,
Fernandez
AG
, et al
.
Loss of miR-144/451 alleviates β-thalassemia by stimulating ULK1-mediated autophagy of free α-globin
.
Blood
.
2023
;
142
(
10
):
918
-
932
.
30.
Kurita
R
,
Suda
N
,
Sudo
K
, et al
.
Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells
.
PLoS One
.
2013
;
8
(
3
):
e59890
.
31.
Psatha
N
,
Georgakopoulou
A
,
Li
C
, et al
.
Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo
.
Blood
.
2021
;
138
(
17
):
1540
-
1553
.
32.
Chaikovsky
AC
,
Li
C
,
Jeng
EE
, et al
.
The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D
.
Nature
.
2021
;
592
(
7856
):
794
-
798
.
33.
Pavani
G
,
Fabiano
A
,
Laurent
M
, et al
.
Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells
.
Blood Adv
.
2021
;
5
(
5
):
1137
-
1153
.
34.
Sanjana
NE
,
Shalem
O
,
Zhang
F
.
Improved vectors and genome-wide libraries for CRISPR screening
.
Nat Methods
.
2014
;
11
(
8
):
783
-
784
.
35.
Zhang
H
,
Zhou
Q
,
Chen
H
,
Lu
D
.
Prime editor 3 mediated beta-thalassemia mutations of the HBB gene in human erythroid progenitor cells
.
Int J Mol Sci
.
2022
;
23
(
9
):
5002
.
36.
Klionsky
DJ
,
Abdel-Aziz
AK
,
Abdelfatah
S
, et al
.
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
.
Autophagy
.
2021
;
17
(
1
):
1
-
382
.
37.
Mizushima
N
,
Yoshimori
T
.
How to interpret LC3 immunoblotting
.
Autophagy
.
2007
;
3
(
6
):
542
-
545
.
38.
Sim
NL
,
Kumar
P
,
Hu
J
,
Henikoff
S
,
Schneider
G
,
Ng
PC
.
SIFT web server: predicting effects of amino acid substitutions on proteins
.
Nucleic Acids Res
.
2012
;
40
(
web server issue
):
W452
-
W457
.
39.
Tiberti
M
,
Di Leo
L
,
Vistesen
MV
, et al
.
The Cancermuts software package for the prioritization of missense cancer variants: a case study of AMBRA1 in melanoma
.
Cell Death Dis
.
2022
;
13
(
10
):
872
.
40.
Xu
C
,
Min
J
.
Structure and function of WD40 domain proteins
.
Protein Cell
.
2011
;
2
(
3
):
202
-
214
.
41.
Shinar
E
,
Shalev
O
,
Rachmilewitz
EA
,
Schrier
SL
.
Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia
.
Blood
.
1987
;
70
(
1
):
158
-
164
.
42.
Liu
WJ
,
Ye
L
,
Huang
WF
, et al
.
p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation
.
Cell Mol Biol Lett
.
2016
;
21
:
29
.
43.
Rabinowitz
JD
,
White
E
.
Autophagy and metabolism
.
Science
.
2010
;
330
(
6009
):
1344
-
1348
.
44.
Nazio
F
,
Strappazzon
F
,
Antonioli
M
, et al
.
mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
.
Nat Cell Biol
.
2013
;
15
(
4
):
406
-
416
.
45.
Bagger
FO
,
Kinalis
S
,
Rapin
N
.
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D881
-
d885
.
46.
Fimia
GM
,
Stoykova
A
,
Romagnoli
A
, et al
.
Ambra1 regulates autophagy and development of the nervous system
.
Nature
.
2007
;
447
(
7148
):
1121
-
1125
.
47.
Ye
J
,
Tong
Y
,
Lv
J
, et al
.
Rare mutations in the autophagy-regulating gene AMBRA1 contribute to human neural tube defects
.
Hum Mutat
.
2020
;
41
(
8
):
1383
-
1393
.
48.
Revathidevi
S
,
Hosomichi
K
,
Natsume
T
, et al
.
AMBRA1 p.Gln30Arg mutation, identified in a Cowden syndrome family, exhibits hyperproliferative potential in hTERT-RPE1 cells
.
Int J Mol Sci
.
2022
;
23
(
19
):
11124
.
49.
Dere
E
,
Dahm
L
,
Lu
D
, et al
.
Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender
.
Front Behav Neurosci
.
2014
;
8
:
181
.
50.
Ramírez-Pardo
I
,
Villarejo-Zori
B
,
Jiménez-Loygorri
JI
, et al
.
Ambra1 haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration
.
Autophagy
.
2023
;
19
(
3
):
784
-
804
.
51.
Cianfanelli
V
,
De Zio
D
,
Di Bartolomeo
S
,
Nazio
F
,
Strappazzon
F
,
Cecconi
F
.
Ambra1 at a glance
.
J Cell Sci
.
2015
;
128
(
11
):
2003
-
2008
.
52.
Manganelli
V
,
Matarrese
P
,
Antonioli
M
, et al
.
Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs
.
Autophagy
.
2021
;
17
(
9
):
2528
-
2548
.
53.
Advani
R
,
Rubin
E
,
Mohandas
N
,
Schrier
SL
.
Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia
.
Blood
.
1992
;
79
(
4
):
1064
-
1067
.
54.
Pagliarini
V
,
Wirawan
E
,
Romagnoli
A
, et al
.
Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response
.
Cell Death Differ
.
2012
;
19
(
9
):
1495
-
1504
.
55.
Strappazzon
F
,
Vietri-Rudan
M
,
Campello
S
, et al
.
Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy
.
EMBO J
.
2011
;
30
(
7
):
1195
-
1208
.
56.
Di Rienzo
M
,
Romagnoli
A
,
Ciccosanti
F
, et al
.
AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability
.
Autophagy
.
2022
;
18
(
8
):
1752
-
1762
.
57.
Strappazzon
F
,
Nazio
F
,
Corrado
M
, et al
.
AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1
.
Cell Death Differ
.
2015
;
22
(
3
):
419
-
432
.
58.
Di Rita
A
,
Peschiaroli
A
,
D Acunzo
P
, et al
.
HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα
.
Nat Commun
.
2018
;
9
(
1
):
3755
.
59.
Strappazzon
F
,
Di Rita
A
,
Peschiaroli
A
, et al
.
HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy
.
Cell Death Differ
.
2020
;
27
(
4
):
1155
-
1168
.
You do not currently have access to this content.
Sign in via your Institution