Abstract

Measurable residual disease (MRD) evaluation by multiparameter flow cytometry (MFC) or quantitative polymerase chain reaction methods is an established standard of care for assessing risk of relapse before or after hematopoietic cell transplantation (HCT) for acute lymphoblastic leukemia (ALL). Next-generation sequencing (NGS)–MRD has emerged as a highly effective approach that allows for the detection of lymphoblasts at a level of <1 in 106 nucleated cells, increasing sensitivity of ALL detection by 2 to 3 logs. Early studies have shown superior results compared with MFC and suggest that NGS-MRD may allow for the determination of patients in whom reduced toxicity transplant preparative approaches could be deployed without sacrificing outcomes. Many centers/study groups have implemented immune modulation approaches based on MRD measurements that have resulted in improved outcomes. Challenges remain with NGS-MRD, because it is not commercially available in many countries, and interpretation of results can be complex. Through patient case review, discussion of relevant studies, and detailed expert opinion, we share our approach to NGS-MRD testing before and after HCT in pediatric and adult ALL. Improved pre-HCT risk classification and post-HCT monitoring for relapse in bone marrow and less invasive peripheral blood monitoring by NGS-MRD may lead to alternative approaches to prevent relapse in patients undergoing this challenging procedure.

1.
US Food and Drug Administration
.
FDA authorizes first next generation sequencing-based test to detect very low levels of remaining cancer cells in patients with acute lymphoblastic leukemia or multiple myeloma
. Released 18 September 2018. Accessed 15 January 2024. https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-next-generation-sequencing-based-test-detect-very-low-levels-remaining-cancer.
2.
Saygin
C
,
Cannova
J
,
Stock
W
,
Muffly
L
.
Measurable residual disease in acute lymphoblastic leukemia: methods and clinical context in adult patients
.
Haematologica
.
2022
;
107
(
12
):
2783
-
2793
.
3.
Pulsipher
MA
,
Carlson
C
,
Langholz
B
, et al
.
IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients
.
Blood
.
2015
;
125
(
22
):
3501
-
3508
.
4.
Wood
B
,
Wu
D
,
Crossley
B
, et al
.
Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL
.
Blood
.
2018
;
131
(
12
):
1350
-
1359
.
5.
Logan
AC
,
Vashi
N
,
Faham
M
, et al
.
Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival
.
Biol Blood Marrow Transplant
.
2014
;
20
(
9
):
1307
-
1313
.
6.
Liang
EC
,
Dekker
SE
,
Sabile
JMG
, et al
.
Next-generation sequencing-based MRD in adults with ALL undergoing hematopoietic cell transplantation
.
Blood Adv
.
2023
;
7
(
14
):
3395
-
3402
.
7.
Short
NJ
,
Kantarjian
H
,
Ravandi
F
, et al
.
High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse
.
Blood Adv
.
2022
;
6
(
13
):
4006
-
4014
.
8.
Short
NJ
,
Jabbour
E
,
Macaron
W
, et al
.
Ultrasensitive NGS MRD assessment in Ph+ ALL: prognostic impact and correlation with RT-PCR for BCR::ABL1
.
Am J Hematol
.
2023
;
98
(
8
):
1196
-
1203
.
9.
Muffly
L
,
Sundaram
V
,
Chen
C
, et al
.
Concordance of peripheral blood and bone marrow measurable residual disease in adult acute lymphoblastic leukemia
.
Blood Adv
.
2021
;
5
(
16
):
3147
-
3151
.
10.
Paolino
JD
,
Harris
MH
,
Stevenson
KE
, et al
.
Performance of next generation sequencing for minimal residual disease detection for pediatric patients with acute lymphoblastic leukemia: results from the prospective clinical trial DFCI 16-001
. [abstract].
Blood
.
2021
;
138
(
suppl 1
):
3485
.
11.
Ching
T
,
Duncan
ME
,
Newman-Eerkes
T
, et al
.
Analytical evaluation of the clonoSEQ assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma
.
BMC Cancer
.
2020
;
20
(
1
):
612
.
12.
Pulsipher
MA
,
Han
X
,
Maude
SL
, et al
.
Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia
.
Blood Cancer Discov
.
2022
;
3
(
1
):
66
-
81
.
13.
Myers
RM
,
Shah
NN
,
Pulsipher
MA
.
How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL
.
Blood
.
2023
;
141
(
11
):
1251
-
1264
.
14.
Gokbuget
N
,
Dombret
H
,
Bonifacio
M
, et al
.
Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia
.
Blood
.
2018
;
131
(
14
):
1522
-
1531
.
15.
Brown
PA
,
Ji
L
,
Xu
X
, et al
.
Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial
.
JAMA
.
2021
;
325
(
9
):
833
-
842
.
16.
Locatelli
F
,
Zugmaier
G
,
Rizzari
C
, et al
.
Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: a randomized clinical trial
.
JAMA
.
2021
;
325
(
9
):
843
-
854
.
17.
Gu
M-E
,
Zhang
J-Y
,
Tang
Y-M
,
Xu
W-Q
,
Song
H
,
Xu
X
.
The effectiveness of blinatumomab in clearing next-generation sequencing measurable residual disease in pediatric patients with B-cell acute lymphoblastic leukemia
. [abstract].
Blood
.
2023
;
142
(
suppl 1
):
6076
.
18.
Ashouri
K
,
Hom
B
,
Hwang
J
, et al
.
Blinatumomab therapy for low level minimal residual disease detected by next-generation sequencing in adult B-cell acute lymphoblastic leukemia
. [abstract].
Blood
.
2023
;
142
(
suppl 1
):
6058
.
19.
Schultz
LM
,
Baggott
C
,
Prabhu
S
, et al
.
Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-World Chimeric Antigen Receptor Consortium report
.
J Clin Oncol
.
2022
;
40
(
9
):
945
-
955
.
20.
Roloff
GW
,
Aldoss
I
,
Kopmar
NE
, et al
.
Brexucabtagene autoleucel in adults with relapsed/refractory B-cell ALL: outcomes and novel insights from the real-world outcomes collaborative of CAR T in adult ALL (ROCCA)
. [abstract].
Blood
.
2023
;
142
(
suppl 1
):
1030
.
21.
Abdel-Azim
H
,
Quigg
T
,
Malvar
J
, et al
.
Excellent relapse-free and overall survival in pre-HCT next-generation sequencing (NGS-MRD) negative B-ALL patients with or without TBI-based conditioning: outcome of the Observational Arm of the Pediatric Transplantation and Cellular Therapy Consortium (PTCTC) ONC1701 Endrad Study
.
Transplant Cell Ther
.
2023
;
29
(
2
):
S94
-
S96
.
22.
Krull
KR
,
Zhang
N
,
Santucci
A
, et al
.
Long-term decline in intelligence among adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiation
.
Blood
.
2013
;
122
(
4
):
550
-
553
.
23.
Baker
KS
,
Leisenring
WM
,
Goodman
PJ
, et al
.
Total body irradiation dose and risk of subsequent neoplasms following allogeneic hematopoietic cell transplantation
.
Blood
.
2019
;
133
(
26
):
2790
-
2799
.
24.
Willard
VW
,
Leung
W
,
Huang
Q
,
Zhang
H
,
Phipps
S
.
Cognitive outcome after pediatric stem-cell transplantation: impact of age and total-body irradiation
.
J Clin Oncol
.
2014
;
32
(
35
):
3982
-
3988
.
25.
Friend
BD
,
Bailey-Olson
M
,
Melton
A
, et al
.
The impact of total body irradiation-based regimens on outcomes in children and young adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation
.
Pediatr Blood Cancer
.
2020
;
67
(
2
):
e28079
.
26.
Hourigan
CS
,
Dillon
LW
,
Gui
G
, et al
.
Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease
.
J Clin Oncol
.
2020
;
38
(
12
):
1273
-
1283
.
27.
Pulsipher
MA
,
Langholz
B
,
Wall
DA
, et al
.
Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: for whom and when should interventions be tested?
.
Bone Marrow Transplant
.
2015
;
50
(
9
):
1173
-
1179
.
28.
Lee
S
,
Cho
BS
,
Kim
SY
, et al
.
Allogeneic stem cell transplantation in first complete remission enhances graft-versus-leukemia effect in adults with acute lymphoblastic leukemia: antileukemic activity of chronic graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2007
;
13
(
9
):
1083
-
1094
.
29.
Nordlander
A
,
Mattsson
J
,
Ringden
O
, et al
.
Graft-versus-host disease is associated with a lower relapse incidence after hematopoietic stem cell transplantation in patients with acute lymphoblastic leukemia
.
Biol Blood Marrow Transplant
.
2004
;
10
(
3
):
195
-
203
.
30.
Zikos
P
,
Van Lint
MT
,
Lamparelli
T
, et al
.
Allogeneic hemopoietic stem cell transplantation for patients with high risk acute lymphoblastic leukemia: favorable impact of chronic graft-versus-host disease on survival and relapse
.
Haematologica
.
1998
;
83
(
10
):
896
-
903
.
31.
Bader
P
,
Salzmann-Manrique
E
,
Balduzzi
A
, et al
.
More precisely defining risk peri-HCT in pediatric ALL: pre- vs post-MRD measures, serial positivity, and risk modeling
.
Blood Adv
.
2019
;
3
(
21
):
3393
-
3405
.
32.
Pulsipher
MA
,
Langholz
B
,
Wall
DA
, et al
.
The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 Children's Oncology Group/Pediatric Blood and Marrow Transplant Consortium trial
.
Blood
.
2014
;
123
(
13
):
2017
-
2025
.
33.
Knechtli
CJ
,
Goulden
NJ
,
Hancock
JP
, et al
.
Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia
.
Blood
.
1998
;
92
(
11
):
4072
-
4079
.
34.
Knechtli
CJ
,
Goulden
NJ
,
Hancock
JP
, et al
.
Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia
.
Br J Haematol
.
1998
;
102
(
3
):
860
-
871
.
35.
van der Velden
VH
,
Joosten
SA
,
Willemse
MJ
, et al
.
Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia
.
Leukemia
.
2001
;
15
(
9
):
1485
-
1487
.
36.
Bader
P
,
Kreyenberg
H
,
Henze
GH
, et al
.
Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group
.
J Clin Oncol
.
2009
;
27
(
3
):
377
-
384
.
37.
Bader
P
,
Kreyenberg
H
,
von Stackelberg
A
, et al
.
Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial
.
J Clin Oncol
.
2015
;
33
(
11
):
1275
-
1284
.
38.
Sala Torra
O
,
Othus
M
,
Williamson
DW
, et al
.
Next-generation sequencing in adult B cell acute lymphoblastic leukemia patients
.
Biol Blood Marrow Transplant
.
2017
;
23
(
4
):
691
-
696
.
39.
Balduzzi
A
,
Di Maio
L
,
Silvestri
D
, et al
.
Minimal residual disease before and after transplantation for childhood acute lymphoblastic leukaemia: is there any room for intervention?
.
Br J Haematol
.
2014
;
164
(
3
):
396
-
408
.
40.
Rettinger
E
,
Merker
M
,
Salzmann-Manrique
E
, et al
.
Pre-emptive immunotherapy for clearance of molecular disease in childhood acute lymphoblastic leukemia after transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
1
):
87
-
95
.
41.
Lankester
AC
,
Bierings
MB
,
van Wering
ER
, et al
.
Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation
.
Leukemia
.
2010
;
24
(
8
):
1462
-
1469
.
42.
Saini
N
,
Marin
D
,
Ledesma
C
, et al
.
Impact of TKIs post-allogeneic hematopoietic cell transplantation in Philadelphia chromosome-positive ALL
.
Blood
.
2020
;
136
(
15
):
1786
-
1789
.
43.
Warraich
Z
,
Tenneti
P
,
Thai
T
, et al
.
Relapse prevention with tyrosine kinase inhibitors after allogeneic transplantation for Philadelphia chromosome-positive acute lymphoblast leukemia: a systematic review
.
Biol Blood Marrow Transplant
.
2020
;
26
(
3
):
e55
-
e64
.
44.
Jeyakumar
N
,
Smith
M
.
Custom CARs: leveraging the adaptability of allogeneic CAR therapies to address current challenges in relapsed/refractory DLBCL
.
Front Immunol
.
2022
;
13
:
887866
.
45.
Short
NJ
,
Jabbour
E
,
Albitar
M
, et al
.
Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: a consensus of North American experts
.
Am J Hematol
.
2019
;
94
(
2
):
257
-
265
.
46.
Duffield
AS
,
Mullighan
CG
,
Borowitz
MJ
.
International consensus classification of acute lymphoblastic leukemia/lymphoma
.
Virchows Arch
.
2023
;
482
(
1
):
11
-
26
.
47.
Dekker
SE
,
Sabile
J
,
Dasilva
B
, et al
.
Discordance between next generation sequencing and BCR-ABL PCR measurable residual disease in adult patients with Ph+ acute lymphoblastic leukemia
. [abstract].
Blood
.
2023
;
142
(
suppl 1
):
6061
.
48.
Zuna
J
,
Hovorkova
L
,
Krotka
J
, et al
.
Minimal residual disease in BCR::ABL1-positive acute lymphoblastic leukemia: different significance in typical ALL and in CML-like disease
.
Leukemia
.
2022
;
36
(
12
):
2793
-
2801
.
49.
Liang
EC
,
Dekker
SE
,
Sabile
JMG
, et al
.
Trajectory of NGS MRD-detected clonotypes throughout the first year following allogeneic hematopoietic cell transplantation in adult acute lymphoblastic leukemia
. [abstract].
Transplant Cell Therapy
.
2023
;
29
(
2 suppl
):
S6
.
50.
Buchmann
S
,
Schrappe
M
,
Baruchel
A
, et al
.
Remission, treatment failure, and relapse in pediatric ALL: an International Consensus of the Ponte-di-Legno Consortium
.
Blood
.
2022
;
139
(
12
):
1785
-
1793
.
You do not currently have access to this content.
Sign in via your Institution