• High IGF1R signaling in pBMSCs establishes the HSC niche and determines the definitive hematopoiesis in the BM.

  • IGF1R signaling promotes CXCL12 and other niche factor expression in pBMSCs to retain HSCs through an AKT-NFAT axis.

Abtract

During the transition from embryonic to adult life, the sites of hematopoiesis undergo dynamic shifts across various tissues. In adults, although bone marrow (BM) becomes the primary site for definitive hematopoiesis, the establishment of the BM niche for accommodating hematopoietic stem cells (HSCs) remains incompletely understood. Here, we reveal that perinatal BM mesenchymal stem cells (BMSCs) exhibit highly activated insulin-like growth factor 1 receptor (IGF1R) signaling compared with adult BMSCs (aBMSCs). Deletion of Igf1r in perinatal BMSCs (pBMSCs) hinders the transition of HSCs from the fetal liver to the BM in perinatal mice and disrupts hematopoiesis in adult individuals. Conversely, the deletion of Igf1r in aBMSCs, adipocytes, osteoblasts, or endothelial cells does not affect HSCs in the BM. Mechanistically, IGF1R signaling activates the transcription factor nuclear factor of activated T cells c1 in pBMSCs, which upregulates CXCL12 and other niche factors for HSC retention. Overall, IGF1R signaling in pBMSCs regulates the development of the BM niche for hematopoiesis.

1.
Mack
R
,
Zhang
L
,
Breslin Sj
P
,
Zhang
J
.
The fetal-to-adult hematopoietic stem cell transition and its role in childhood hematopoietic malignancies
.
Stem Cell Rev Rep
.
2021
;
17
(
6
):
2059
-
2080
.
2.
Coskun
S
,
Hirschi
KK
.
Establishment and regulation of the HSC niche: roles of osteoblastic and vascular compartments
.
Birth Defects Res C Embryo Today
.
2010
;
90
(
4
):
229
-
242
.
3.
Greenbaum
A
,
Hsu
YMS
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
4.
Ding
L
,
Morrison
SJ
.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
5.
Ara
T
,
Tokoyoda
K
,
Sugiyama
T
,
Egawa
T
,
Kawabata
K
,
Nagasawa
T
.
Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny
.
Immunity
.
2003
;
19
(
2
):
257
-
267
.
6.
Zhang
J
,
Niu
C
,
Ye
L
, et al
.
Identification of the haematopoietic stem cell niche and control of the niche size
.
Nature
.
2003
;
425
(
6960
):
836
-
841
.
7.
Calvi
LM
,
Adams
GB
,
Weibrecht
KW
, et al
.
Osteoblastic cells regulate the haematopoietic stem cell niche
.
Nature
.
2003
;
425
(
6960
):
841
-
846
.
8.
Mendez-Ferrer
S
,
Michurina
TV
,
Ferraro
F
, et al
.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
9.
Coşkun
S
,
Chao
H
,
Vasavada
H
, et al
.
Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells
.
Cell Rep
.
2014
;
9
(
2
):
581
-
590
.
10.
Isern
J
,
García-García
A
,
Martín
AM
, et al
.
The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function
.
Elife
.
2014
;
3
:
e03696
.
11.
Ziegler
AN
,
Levison
SW
,
Wood
TL
.
Insulin and IGF receptor signalling in neural-stem-cell homeostasis
.
Nat Rev Endocrinol
.
2015
;
11
(
3
):
161
-
170
.
12.
Liu
JP
,
Baker
J
,
Perkins
AS
,
Robertson
EJ
,
Efstratiadis
A
.
Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r)
.
Cell
.
1993
;
75
(
1
):
59
-
72
.
13.
Baker
J
,
Liu
JP
,
Robertson
EJ
,
Efstratiadis
A
.
Role of insulin-like growth factors in embryonic and postnatal growth
.
Cell
.
1993
;
75
(
1
):
73
-
82
.
14.
Yakar
S
,
Rosen
CJ
,
Beamer
WG
, et al
.
Circulating levels of IGF-1 directly regulate bone growth and density
.
J Clin Invest
.
2002
;
110
(
6
):
771
-
781
.
15.
Fisher
MC
,
Meyer
C
,
Garber
G
,
Dealy
CN
.
Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth
.
Bone
.
2005
;
37
(
6
):
741
-
750
.
16.
Wang
J
,
Zhu
Q
,
Cao
D
, et al
.
Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
1
):
e2203779120
.
17.
Xian
L
,
Wu
X
,
Pang
L
, et al
.
Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
.
Nat Med
.
2012
;
18
(
7
):
1095
-
1101
.
18.
Wang
Y
,
Cheng
Z
,
Elalieh
HZ
, et al
.
IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway
.
J Bone Miner Res
.
2011
;
26
(
7
):
1437
-
1446
.
19.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
):
1473
-
1482.e7
.
20.
Logan
M
,
Martin
JF
,
Nagy
A
,
Lobe
C
,
Olson
EN
,
Tabin
CJ
.
Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer
.
Genesis
.
2002
;
33
(
2
):
77
-
80
.
21.
DeFalco
J
,
Tomishima
M
,
Liu
H
, et al
.
Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus
.
Science
.
2001
;
291
(
5513
):
2608
-
2613
.
22.
Hao
ZM
,
Yang
X
,
Cheng
X
,
Zhou
J
,
Huang
CF
.
Generation and characterization of chondrocyte specific Cre transgenic mice
.
Yi Chuan Xue Bao
.
2002
;
29
(
5
):
424
-
429
.
23.
Liu
F
,
Woitge
HW
,
Braut
A
, et al
.
Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues
.
Int J Dev Biol
.
2004
;
48
(
7
):
645
-
653
.
24.
Huang
D
,
Sun
G
,
Hao
X
, et al
.
ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression
.
J Clin Invest
.
2021
;
131
(
1
):
e138986
.
25.
Shu
HS
,
Liu
YL
,
Tang
XT
, et al
.
Tracing the skeletal progenitor transition during postnatal bone formation
.
Cell Stem Cell
.
2021
;
28
(
12
):
2122
-
2136.e3
.
26.
Zhong
L
,
Yao
L
,
Tower
RJ
, et al
.
Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment
.
Elife
.
2020
;
9
:
e54695
.
27.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
JG
,
Morrison
SJ
.
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
28.
Jeffery
EC
,
Mann
TLA
,
Pool
JA
,
Zhao
Z
,
Morrison
SJ
.
Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair
.
Cell Stem Cell
.
2022
;
29
(
11
):
1547
-
1561.e6
.
29.
Su
N
,
Jin
M
,
Chen
L
.
Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models
.
Bone Res
.
2014
;
2
:
14003
.
30.
Zhao
M
,
Ross
JT
,
Itkin
T
, et al
.
FGF signaling facilitates postinjury recovery of mouse hematopoietic system
.
Blood
.
2012
;
120
(
9
):
1831
-
1842
.
31.
Mizoguchi
T
,
Pinho
S
,
Ahmed
J
, et al
.
Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development
.
Dev Cell
.
2014
;
29
(
3
):
340
-
349
.
32.
Rowe
RG
,
Mandelbaum
J
,
Zon
LI
,
Daley
GQ
.
Engineering hematopoietic stem cells: lessons from development
.
Cell Stem Cell
.
2016
;
18
(
6
):
707
-
720
.
33.
Ciriza
J
,
Thompson
H
,
Petrosian
R
,
Manilay
JO
,
García-Ojeda
ME
.
The migration of hematopoietic progenitors from the fetal liver to the fetal bone marrow: lessons learned and possible clinical applications
.
Exp Hematol
.
2013
;
41
(
5
):
411
-
423
.
34.
Omatsu
Y
,
Seike
M
,
Sugiyama
T
,
Kume
T
,
Nagasawa
T
.
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
.
Nature
.
2014
;
508
(
7497
):
536
-
540
.
35.
Seike
M
,
Omatsu
Y
,
Watanabe
H
,
Kondoh
G
,
Nagasawa
T
.
Stem cell niche-specific Ebf3 maintains the bone marrow cavity
.
Genes Dev
.
2018
;
32
(
5-6
):
359
-
372
.
36.
Zhou
BO
,
Yu
H
,
Yue
R
, et al
.
Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF
.
Nat Cell Biol
.
2017
;
19
(
8
):
891
-
903
.
37.
Castro-Mondragon
JA
,
Riudavets-Puig
R
,
Rauluseviciute
I
, et al
.
JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D165
-
d173
.
38.
Van de Sande
B
,
Flerin
C
,
Davie
K
, et al
.
A scalable SCENIC workflow for single-cell gene regulatory network analysis
.
Nat Protoc
.
2020
;
15
(
7
):
2247
-
2276
.
39.
Beals
CR
,
Sheridan
CM
,
Turck
CW
,
Gardner
P
,
Crabtree
GR
.
Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3
.
Science
.
1997
;
275
(
5308
):
1930
-
1934
.
40.
Cross
DA
,
Alessi
DR
,
Cohen
P
,
Andjelkovich
M
,
Hemmings
BA
.
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
.
Nature
.
1995
;
378
(
6559
):
785
-
789
.
41.
Fang
X
,
Yu
SX
,
Lu
Y
,
Bast
RC
,
Woodgett
JR
,
Mills
GB
.
Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
22
):
11960
-
11965
.
42.
Neal
JW
,
Clipstone
NA
.
Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc
.
J Biol Chem
.
2001
;
276
(
5
):
3666
-
3673
.
43.
Helbling
PM
,
Piñeiro-Yáñez
E
,
Gerosa
R
, et al
.
Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation
.
Cell Rep
.
2019
;
29
(
10
):
3313
-
3330.e4
.
44.
Liu
Y
,
Chen
Q
,
Jeong
HW
, et al
.
A specialized bone marrow microenvironment for fetal haematopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
1327
.
45.
Hall
TD
,
Kim
H
,
Dabbah
M
, et al
.
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth
.
Nat Commun
.
2022
;
13
(
1
):
5403
.
46.
Pineault
KM
,
Song
JY
,
Kozloff
KM
,
Lucas
D
,
Wellik
DM
.
Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life
.
Nat Commun
.
2019
;
10
(
1
):
3168
.
47.
Ono
N
,
Ono
W
,
Nagasawa
T
,
Kronenberg
HM
.
A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones
.
Nat Cell Biol
.
2014
;
16
(
12
):
1157
-
1167
.
48.
Forsberg
EC
,
Smith-Berdan
S
.
Parsing the niche code: the molecular mechanisms governing hematopoietic stem cell adhesion and differentiation
.
Haematologica
.
2009
;
94
(
11
):
1477
-
1481
.
49.
Gur-Cohen
S
,
Itkin
T
,
Chakrabarty
S
, et al
.
PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells
.
Nat Med
.
2015
;
21
(
11
):
1307
-
1317
.
50.
Arai
F
,
Hirao
A
,
Ohmura
M
, et al
.
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
.
Cell
.
2004
;
118
(
2
):
149
-
161
.
51.
Sacchetti
B
,
Funari
A
,
Michienzi
S
, et al
.
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
.
Cell
.
2007
;
131
(
2
):
324
-
336
.
52.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
53.
Petit
I
,
Szyper-Kravitz
M
,
Nagler
A
, et al
.
G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
.
Nat Immunol
.
2002
;
3
(
7
):
687
-
694
.
54.
Rao
A
,
Luo
C
,
Hogan
PG
.
Transcription factors of the NFAT family: regulation and function
.
Annu Rev Immunol
.
1997
;
15
:
707
-
747
.
55.
Horsley
V
,
Aliprantis
AO
,
Polak
L
,
Glimcher
LH
,
Fuchs
E
.
NFATc1 balances quiescence and proliferation of skin stem cells
.
Cell
.
2008
;
132
(
2
):
299
-
310
.
56.
Sugimura
R
,
He
XC
,
Venkatraman
A
, et al
.
Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche
.
Cell
.
2012
;
150
(
2
):
351
-
365
.
57.
Crabtree
GR
,
Olson
EN
.
NFAT signaling: choreographing the social lives of cells
.
Cell
.
2002
;
109
(
suppl
):
S67
-
S79
.
You do not currently have access to this content.
Sign in via your Institution