• Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), housing 69 distinct variants (20 novel).

  • Links to (1) liver enzyme, blood cell, and lipid genetic signals, (2) liver regulatory elements, and (3) thrombotic and inflammatory disease.

Abstract

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole-genome sequencing (WGS) data provide better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the National Heart, Lung, and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed) program (n = 32 572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 131 340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, 4 are driven by common variants of small effect with reported minor allele frequency (MAF) at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor 2 conditionally distinct, noncoding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA) contains 7 distinct signals, including 1 novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR = 0.180; MAFEUR = 0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

Fibrinogen is a critical coagulation factor and acute phase reactive protein. Under normal conditions, fibrinogen is abundant in circulation, yet during the acute phase inflammatory response, interleukin--6 (IL-6) and IL-1 mediate transcriptional cascades that increase circulating fibrinogen levels up to 3-fold above baseline.1,2 Fibrinogen measures are a clinical predictor of thrombotic diseases, including coronary heart disease, myocardial infarction, venous thromboembolism, and ischemic stroke.3,4 Although animal models have shown a causative relationship between fibrinogen and thrombosis,5,6 this has been difficult to confirm in human genetic studies.7-9 

Circulating fibrinogen levels are estimated to be 21% to 67% heritable,10,11 with most estimates falling in the 30% to 50% range,12,13 and heterogeneous across diverse populations.14-16 Individuals identifying as African American have higher reported baseline levels of fibrinogen,14-16 with 1 study suggesting higher fibrinogen heritability in African Americans (44%) vs non-Hispanic Whites (28%).17 Although genome-wide and exome-wide sequencing studies have identified several loci associated with fibrinogen measures, these variants explain a maximum of 3.7% of variance in European populations.7,18,19 Little is known regarding genetic regulation of fibrinogen across diverse populations.

Unlike genotyping arrays, which often have better coverage of variants common in European populations, whole-genome sequencing (WGS) allows nontargeted genomic interrogation across all populations.20 Broader coverage provided by WGS increases confidence in minor allele calls, improving power to detect associations with rare and low-frequency variants, and to distinguish multiple signals in the same region.21,22 Furthermore, large-scale WGS-based reference panels improve imputation quality, increasing power in meta-analysis.21,22 Incorporating more sensitive genomic measurements, such as WGS, in genetic analyses of fibrinogen may reveal additional associations across a range of allele frequencies and effect sizes in diverse populations.

In this study, we performed genome-wide analyses integrating WGS data from National Heart, Lung, and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed) program23 and TOPMed-imputed genotyping data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium24 to identify new genetic variants associated with circulating fibrinogen. To determine putative regulatory mechanisms and prioritize potentially causal genes, we performed in silico annotation, colocalization analyses, transcriptome-wide association study (TWAS), and TWAS fine mapping. Additionally, we tested the hypothesis that polygenic risk scores (PRSs) for fibrinogen are also associated with coagulation and inflammation-related phenotypes in European and African ancestry participants from the VA Million Veteran Program (MVP).25 

Design and study population

To investigate the genetic architecture of circulating fibrinogen, we performed a multipopulation genome-wide association study (GWAS), followed by TWAS and phenome-wide association study (PheWAS). An overview of the study design is in Figure 1 and supplemental Figure 1, available on the Blood website. These analyses were undertaken within National Heart, Lung, and Blood Institute’s TOPMed Program and the CHARGE Consortium’s Hemostasis Working Group. In total, 163 912 participants contributed to primary genomic analyses, including 11 283 African-ancestry (AFR), 741 Asian-ancestry, 149 619 European-ancestry (EUR), and 2061 Hispanic participants. Details of the 40 participating studies are in Table 1 and the supplemental Data. The contributing studies were all approved by their relevant institutional review boards.

Figure 1.

Study design.

Figure 1.

Study design.

Close modal
Table 1.

Participating studies

SourceCategoryStudyGroupPopulation groupTotal no.% MaleAge, mean (SD), yFibrinogen mean (SD), g/LFibrinogen method
TOPMed Freeze 6 WGS Amish Research Program EUR 558 48.0 56.3 (14.2) 3.2 (0.8) Clauss 
  Atherosclerosis Risk in Communities (ARIC) AFR 664 40.5 54.2 (6.0) 3.3 (0.8) Clauss 
   EUR 5 963 45.7 54.0 (5.7) 3.0 (0.6)  
  Coronary Artery Risk Development in Young Adults Study (CARDIA) AFR 542 39.5 26.9 (4.2) 2.3 (0.5) Clauss 
   EUR 874 45.7 28.3 (3.4) 2.1 (0.5)  
   NA 131 52.7 27.0 (3.9) 2.3 (0.6)  
  Cleveland Family Study (CFS) AFR 366 43.4 40.2 (18.4) 3.2 (0.9) Clauss 
   EUR 258 47.7 45.9 (19.1) 3.3 (0.7)  
  Cardiovascular Health Study (CHS) AFR 497 39.4 72.4 (5.2) 3.4 (0.7) Clauss 
   EUR 2 247 44.4 72.5 (5.3) 3.2 (0.7)  
  COPDGene Study AFR 188 51.6 54.3 (7.0) 5.0 (1.1) Clauss 
   EUR 1 191 48.7 62.0 (9.1) 5.1 (1.2)  
  Framingham Heart Study (FHS) EUR 3 535 46.2 49.2 (11.9) 3.2 (0.6) Clauss 
  Genetic Study of Atherosclerosis Risk (GeneSTAR) AFR 767 36.4 41.0 (10.9) 3.8 (1.1) Clauss 
   EUR 945 44.2 42.7 (12.3) 3.6 (1.1)  
  Genetic Epidemiology Network of Arteriopathy (GENOA) AFR 703 26.6 61.0 (10.4) 3.8 (1.0) Clauss 
  Jackson Heart Study (JHS) AFR 2 926 38.0 54.9 (12.9) 4.2 (0.9) Clauss 
  Multi-Ethnic Study of Atherosclerosis (MESA) AFR 1 082 47.2 60.8 (9.6) 3.6 (0.8) Clauss 
   ASN 1 828 49.1 61.5 (9.8) 3.3 (0.7)  
   EUR 1 014 48.6 60.2 (9.8) 3.6 (0.7)  
   HIS 601 50.2 61.2 (10.1) 3.3 (0.6)  
  San Antonio Family Study (SAFS) HIS 370 35.9 41.0 (15.8) 3.0 (0.7) Clauss 
   NA 22 45.5 43.0 (21.6) 3.2 (1.0)  
  Women’s Health Initiative (WHI) AFR 740 0.0 63.0 (7.0) 3.2 (0.7) Clauss 
   AI/AN 35 0.0 64.0 (7.7) 3.1 (0.7)  
   ASN 140 0.0 66.2 (7.4) 2.9 (0.6)  
   EUR 4 213 0.0 67.2 (6.9) 3.0 (0.7)  
   HIS 174 0.0 62.5 (6.2) 3.1 (0.7)  
   NA 20 0.0 68.0 (7.3) 3.2 (0.9)  
 No WGS, TOPMed Imputation ARIC AFR 2 170 36.4 53.2 (5.7) 3.2 (0.7) See above 
   EUR 3 790 48.6 54.6 (5.7) 3.0 (0.6)  
  CHS EUR 1 508 38.9 72.3 (5.4) 3.2 (0.6) See above 
  FHS EUR 1 565 44.5 49.5 (11.9) 3.2 (0.7) See above 
  WHI GARNET EUR 442 0.0 64.7 (7.5) 3.2 (0.9) See above 
   ONCO EUR 312 0.0 66.9 (5.8) 3.1 (0.9)  
   HIPFX EUR 133 0.0 70.5 (4.9) 3.3 (1.0)  
   SHARE AFR 496 0.0 62.1 (7.3) 3.5 (0.9)  
    HIS 357 0.0 60.1 (6.8) 3.2 (0.7)  
CHARGE TOPMed Imputation Airwave Health Monitoring Study (Airwave) EUR 13 405 65.8 40.4 (9.0) 3.8 (1.0) Clauss 
  Caerphilly Prospective study (CaPs) EUR 1 159 100.0 56.8 (4.5) 4.0 (0.8) Clauss and HN 
  CHRIS EUR 9 012 43.9 44.2 (15.4) 2.8 (0.6) Clauss 
  CROATIA Korcula EUR 798 35.4 56.3 (14.0) 4.6 (1.5) Clauss 
   Split EUR 953 38.9 50.3 (14.0) 4.1 (1.6) Clauss 
   Vis EUR 924 42.5 56.1 (15.6) 3.6 (0.8) Clauss 
  European Prospective Investigation in Cancer (EPIC) Norfolk Study (EPIC-Norfolk) EUR 17 473 47.0 59.2 (9.2) 2.9 (1.0) Clauss 
  FHS_omni AFR 142 37.3 53.5 (9.4) 3.4 (0.7) Clauss 
   HIS 168 36.3 49.1 (8.0) 3.3 (0.6)  
  Genetic Analysis of Idiopathic Thrombophilia (GAIT2) EUR 896 49.4 39.7 (21.4) 3.5 (0.8) Clauss 
  Helsinki Birth Cohort Study (HBCS) EUR 1 321 40.6 61.4 (2.9) 3.3 (1.0) Clauss 
  Lothian Birth Cohort 1921 (LBC1921) EUR 486 42.4 76.1 (0.6) 3.6 (0.9) Clauss 
  Lothian Birth Cohort 1936 (LBC1936) EUR 988 50.8 69.6 (0.8) 3.3 (0.6) Clauss 
  Ludwigshafen Risk and Cardiovascular Health (LURIC) EUR 2 731 70.0 62.7 (10.6) 4.0 (1.1) Clauss 
  Marseille Thrombosis Association (MARTHA) EUR 985 29.0 45.4 (14.9) 3.4 (0.7) Clauss 
  Netherlands Epidemiology of Obesity (NEO) EUR 5 303 46.8 56.0 (6.0) 3.0 (0.6) Clauss 
  Netherlands Twin Registry (NTR) EUR 7 650 38.5 44.9 (14.6) 2.8 (0.7) Clauss 
  Precocious Coronary Artery Disease Study (PROCARDIS) Cases EUR 4 196 73.0 62.2 (7.0) 4.2 (1.0) Clauss and IN 
   Controls EUR 2 224 76.2 55.1 (8.3) 3.5 (0.9)  
  Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) EUR 4 951 48.1 75.3 (3.3) 3.6 (0.7) Clauss 
  RETROVE Cases EUR 398 49.2 61.8 (18.6) 3.8 (0.9) Clauss 
   Controls EUR 398 48.7 47.1 (18.2) 3.4 (0.7)  
  SardiNIA EUR 5 931 35.9 43.6 (17.6) 3.3 (0.7) Clauss 
  Study of Health in Pomerania (SHIP) SHIP-START EUR 3 571 47.5 47.5 (15.6) 3.0 (0.7) Clauss 
   SHIP-TREND-B1 EUR 909 42.9 49.1 (13.4) 3.0 (0.7) Clauss 
   SHIP-TREND-B2 EUR 1 505 49.0 49.5 (15.0) 3.0 (0.8) Clauss 
  TWINSUK EUR 2 037 4.7 49.1 (12.6) 3.0 (0.8) Clauss 
  Viking Health Study-Shetland (VIKING) EUR 2 086 40.1 49.9 (15.2) 3.5 (0.8) Clauss 
  Women’s Genome Health Study (WGHS) EUR 22 962 0.0 54.2 (7.1) 3.6 (0.8) ITA 
 HRC Imputation GOYA EUR 1 431 100.0 45.6 (7.9) 3.1 (0.8) FPA 
  Inter99 EUR 649 61.8 49.5 (6.4) 2.1 (1.5) UI 
  Rotterdam Study (RS) RS1 EUR 2 252 36.5 70.5 (8.9) 2.8 (0.7) Clauss 
   RS2 EUR 673 45.5 64.8 (8.0) 3.9 (0.9)  
SourceCategoryStudyGroupPopulation groupTotal no.% MaleAge, mean (SD), yFibrinogen mean (SD), g/LFibrinogen method
TOPMed Freeze 6 WGS Amish Research Program EUR 558 48.0 56.3 (14.2) 3.2 (0.8) Clauss 
  Atherosclerosis Risk in Communities (ARIC) AFR 664 40.5 54.2 (6.0) 3.3 (0.8) Clauss 
   EUR 5 963 45.7 54.0 (5.7) 3.0 (0.6)  
  Coronary Artery Risk Development in Young Adults Study (CARDIA) AFR 542 39.5 26.9 (4.2) 2.3 (0.5) Clauss 
   EUR 874 45.7 28.3 (3.4) 2.1 (0.5)  
   NA 131 52.7 27.0 (3.9) 2.3 (0.6)  
  Cleveland Family Study (CFS) AFR 366 43.4 40.2 (18.4) 3.2 (0.9) Clauss 
   EUR 258 47.7 45.9 (19.1) 3.3 (0.7)  
  Cardiovascular Health Study (CHS) AFR 497 39.4 72.4 (5.2) 3.4 (0.7) Clauss 
   EUR 2 247 44.4 72.5 (5.3) 3.2 (0.7)  
  COPDGene Study AFR 188 51.6 54.3 (7.0) 5.0 (1.1) Clauss 
   EUR 1 191 48.7 62.0 (9.1) 5.1 (1.2)  
  Framingham Heart Study (FHS) EUR 3 535 46.2 49.2 (11.9) 3.2 (0.6) Clauss 
  Genetic Study of Atherosclerosis Risk (GeneSTAR) AFR 767 36.4 41.0 (10.9) 3.8 (1.1) Clauss 
   EUR 945 44.2 42.7 (12.3) 3.6 (1.1)  
  Genetic Epidemiology Network of Arteriopathy (GENOA) AFR 703 26.6 61.0 (10.4) 3.8 (1.0) Clauss 
  Jackson Heart Study (JHS) AFR 2 926 38.0 54.9 (12.9) 4.2 (0.9) Clauss 
  Multi-Ethnic Study of Atherosclerosis (MESA) AFR 1 082 47.2 60.8 (9.6) 3.6 (0.8) Clauss 
   ASN 1 828 49.1 61.5 (9.8) 3.3 (0.7)  
   EUR 1 014 48.6 60.2 (9.8) 3.6 (0.7)  
   HIS 601 50.2 61.2 (10.1) 3.3 (0.6)  
  San Antonio Family Study (SAFS) HIS 370 35.9 41.0 (15.8) 3.0 (0.7) Clauss 
   NA 22 45.5 43.0 (21.6) 3.2 (1.0)  
  Women’s Health Initiative (WHI) AFR 740 0.0 63.0 (7.0) 3.2 (0.7) Clauss 
   AI/AN 35 0.0 64.0 (7.7) 3.1 (0.7)  
   ASN 140 0.0 66.2 (7.4) 2.9 (0.6)  
   EUR 4 213 0.0 67.2 (6.9) 3.0 (0.7)  
   HIS 174 0.0 62.5 (6.2) 3.1 (0.7)  
   NA 20 0.0 68.0 (7.3) 3.2 (0.9)  
 No WGS, TOPMed Imputation ARIC AFR 2 170 36.4 53.2 (5.7) 3.2 (0.7) See above 
   EUR 3 790 48.6 54.6 (5.7) 3.0 (0.6)  
  CHS EUR 1 508 38.9 72.3 (5.4) 3.2 (0.6) See above 
  FHS EUR 1 565 44.5 49.5 (11.9) 3.2 (0.7) See above 
  WHI GARNET EUR 442 0.0 64.7 (7.5) 3.2 (0.9) See above 
   ONCO EUR 312 0.0 66.9 (5.8) 3.1 (0.9)  
   HIPFX EUR 133 0.0 70.5 (4.9) 3.3 (1.0)  
   SHARE AFR 496 0.0 62.1 (7.3) 3.5 (0.9)  
    HIS 357 0.0 60.1 (6.8) 3.2 (0.7)  
CHARGE TOPMed Imputation Airwave Health Monitoring Study (Airwave) EUR 13 405 65.8 40.4 (9.0) 3.8 (1.0) Clauss 
  Caerphilly Prospective study (CaPs) EUR 1 159 100.0 56.8 (4.5) 4.0 (0.8) Clauss and HN 
  CHRIS EUR 9 012 43.9 44.2 (15.4) 2.8 (0.6) Clauss 
  CROATIA Korcula EUR 798 35.4 56.3 (14.0) 4.6 (1.5) Clauss 
   Split EUR 953 38.9 50.3 (14.0) 4.1 (1.6) Clauss 
   Vis EUR 924 42.5 56.1 (15.6) 3.6 (0.8) Clauss 
  European Prospective Investigation in Cancer (EPIC) Norfolk Study (EPIC-Norfolk) EUR 17 473 47.0 59.2 (9.2) 2.9 (1.0) Clauss 
  FHS_omni AFR 142 37.3 53.5 (9.4) 3.4 (0.7) Clauss 
   HIS 168 36.3 49.1 (8.0) 3.3 (0.6)  
  Genetic Analysis of Idiopathic Thrombophilia (GAIT2) EUR 896 49.4 39.7 (21.4) 3.5 (0.8) Clauss 
  Helsinki Birth Cohort Study (HBCS) EUR 1 321 40.6 61.4 (2.9) 3.3 (1.0) Clauss 
  Lothian Birth Cohort 1921 (LBC1921) EUR 486 42.4 76.1 (0.6) 3.6 (0.9) Clauss 
  Lothian Birth Cohort 1936 (LBC1936) EUR 988 50.8 69.6 (0.8) 3.3 (0.6) Clauss 
  Ludwigshafen Risk and Cardiovascular Health (LURIC) EUR 2 731 70.0 62.7 (10.6) 4.0 (1.1) Clauss 
  Marseille Thrombosis Association (MARTHA) EUR 985 29.0 45.4 (14.9) 3.4 (0.7) Clauss 
  Netherlands Epidemiology of Obesity (NEO) EUR 5 303 46.8 56.0 (6.0) 3.0 (0.6) Clauss 
  Netherlands Twin Registry (NTR) EUR 7 650 38.5 44.9 (14.6) 2.8 (0.7) Clauss 
  Precocious Coronary Artery Disease Study (PROCARDIS) Cases EUR 4 196 73.0 62.2 (7.0) 4.2 (1.0) Clauss and IN 
   Controls EUR 2 224 76.2 55.1 (8.3) 3.5 (0.9)  
  Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) EUR 4 951 48.1 75.3 (3.3) 3.6 (0.7) Clauss 
  RETROVE Cases EUR 398 49.2 61.8 (18.6) 3.8 (0.9) Clauss 
   Controls EUR 398 48.7 47.1 (18.2) 3.4 (0.7)  
  SardiNIA EUR 5 931 35.9 43.6 (17.6) 3.3 (0.7) Clauss 
  Study of Health in Pomerania (SHIP) SHIP-START EUR 3 571 47.5 47.5 (15.6) 3.0 (0.7) Clauss 
   SHIP-TREND-B1 EUR 909 42.9 49.1 (13.4) 3.0 (0.7) Clauss 
   SHIP-TREND-B2 EUR 1 505 49.0 49.5 (15.0) 3.0 (0.8) Clauss 
  TWINSUK EUR 2 037 4.7 49.1 (12.6) 3.0 (0.8) Clauss 
  Viking Health Study-Shetland (VIKING) EUR 2 086 40.1 49.9 (15.2) 3.5 (0.8) Clauss 
  Women’s Genome Health Study (WGHS) EUR 22 962 0.0 54.2 (7.1) 3.6 (0.8) ITA 
 HRC Imputation GOYA EUR 1 431 100.0 45.6 (7.9) 3.1 (0.8) FPA 
  Inter99 EUR 649 61.8 49.5 (6.4) 2.1 (1.5) UI 
  Rotterdam Study (RS) RS1 EUR 2 252 36.5 70.5 (8.9) 2.8 (0.7) Clauss 
   RS2 EUR 673 45.5 64.8 (8.0) 3.9 (0.9)  

AFR, African American; AI/AN, American Indian or Alaska Native; ASN, East Asian American; EUR, European or European American; FPA, functional photometric assay; HIS, Hispanic or Latino; HN, heat-nephelometry; IN, immune-nephelometric; ITA, immunoturbidimetric assay; NA, missing; UI, ultrasensitive immunoassay; WGS, whole-genome sequencing.

Population group assignment was determined by each study internally. Studies often used some combination of self-reported race or ethnicity data (which in many cases was used for stratification at the genotyping stage, making future pooled analysis challenging) and comparison of ancestry principal components to commonly used reference panels such as 1000G (often with exclusion of any extreme outliers). We acknowledge that this is not concordant with the most up-to-date standards for defining ancestry clusters based on similarity to reference panels26 but do not have access to individual-level data for most participants and are thus reliant on these study assignments.

Phenotyping and harmonization

Fibrinogen was measured in g/L. Most studies measured levels of functional fibrinogen using the Clauss method,27 whereas the remaining 7 studies used a variety of approaches, including nephelometry and enzyme-linked immunosorbent assay, to measure fibrinogen antigen, a measure of overall fibrinogen quantity. Study-specific phenotyping methods can be found in Table 1 and the supplemental Data. Measures of plasma fibrinogen for TOPMed studies were harmonized to ensure common units (g/L) and absence of unexpected distributions or an excess of outliers (supplemental Figure 1). Data were then uploaded to Analysis Commons28 for centralized genetic analysis.

WGS of TOPMed participants

TOPMed WGS methods were described previously.23 Briefly, WGS was conducted at 6 sequencing centers (mean depth >30×, Illumina HiSeq X Ten instruments). Joint variant discovery and genotype calling were conducted by the TOPMed Informatics Research Center across all TOPMed studies using the GotCloud pipeline, resulting in a single genotype call set encompassing all TOPMed (TOPMed Freeze 6). Variant quality control was also performed centrally by the Informatics Research Center. Sample quality control was performed by the TOPMed Data Coordinating Center. Further details are in the supplemental Data.

Genotype imputation of non-TOPMed studies

Genotype array data for CHARGE studies and for TOPMed study participants without WGS were imputed using standard methods to the densest available imputation panel (35 using TOPMed Freeze 5b23; 4 using Haplotype Reference Consortium29).

Genome-wide association analyses and meta-analyses

TOPMed WGS genetic analyses were conducted using mixed models and inverse normalized and rescaled residuals, adjusting for age, sex, population group × study, TOPMed sequencing phase, study-specific parameters, and 10 ancestry-informative principal components. Single variant and aggregate gene-based tests were implemented using the SMMAT function of GENESIS on the Analysis Commons cloud computing platform.28,30 Aggregate tests included only variants with minor allele frequency (MAF) <5% and minor allele count (MAC) ≥1 and used 3 strategies for variant selection: (1) loss of function (LOF), (2) LOF or deleterious missense (LDM), and (3) coding, promotor, or enhancer variants.

Studies without sequencing data undertook single-variant analyses within each population group using their software of preference, and the same model described for TOPMed WGS analyses then provided summary statistics for central meta-analysis. Quality control of the study-specific single-variant GWAS summary statistics was undertaken using EasyQC31 using the following variant exclusion criteria: estimated MAC (MAC × imputation quality) <6, absolute effect size (β) >5, standard error >10, sample size <30, or imputation quality <0.30. Meta-analysis was completed using GWAMA32 with genomic control applied to each study but not to the meta-analysis results. Meta-analysis was completed (i) within each population group for studies with imputed data, (ii) within TOPMed WGS studies, and (iii) combined in a multipopulation mega-analysis that included results from (i) and (ii). Statistical significance was set at P < 5.0E-09.33 

Conditional analysis, credible sets, and variance explained

For all genome-wide significant regions from the multipopulation mega-analysis, conditional analyses were undertaken using cojo-slct34 within GCTA35 (supplemental Figure 3). The linkage disequilibrium (LD) reference panel used all TOPMed WGS samples that contributed to this GWAS. The 95% credible sets were calculated for the same regions using the Wellcome Trust Case Control Consortium method.36 Percentage variance explained was estimated with summary-level data reported by GCTA35 for the 69 conditionally independent variants from the mega-analysis, using the approximation derived by Shim et al.37 See supplemental Methods for more details.

Functional annotation of fibrinogen-associated variants

Variant effect prediction

The Ensembl Variant Effect Predictor (VEP) (https://useast.ensembl.org/Tools/VEP)38 was used to determine nearest gene and top predicted consequence for each of the 69 conditionally independent variants and their LD proxies (as determined by r2 > 0.8 in TOP-LD European and/or African ancestry reference panels23,39). VEP was also used to annotate Combined Annotation Dependent Depletion (CADD) Phred40,41 and LoFtool42-predicted impact scores and additionally SIFT43 and PolyPhen44,45 scores for coding variants. InterPro was used to determine amino acid substitution.46 

Overlap of fibrinogen signals and GWAS catalog associations

The same set of variants used for VEP annotation were queried, using rsID, against the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalog v1.0.2, (downloaded 29 October 2022; https://www.ebi.ac.uk/gwas/downloads). Mapped traits corresponding to related quantitative measures were manually cataloged to broad categories (ie, liver enzymes, blood cell count and morphology traits, lipids, etc).

Colocalization

We performed colocalization to query gene-trait associations using fastENLOC47,48 with precomputed Genotype-Tissue Expression (GTEx) multiple-tissue expression quantitative trait loci (eQTL) annotations and fibrinogen GWAS posterior inclusion probabilities (PIPs) as inputs for each of the most relevant tissues: liver and whole blood. We considered a single-nucleotide polymorphism (SNP) level colocalization probability >0.1 or a regional colocalization probability (RCP) >0.5 as strong evidence of colocalization.

Transcription-wide association studies

A TWAS was performed using S-PrediXcan49 to identify associations between cis elements of gene expression and plasma levels of fibrinogen in mechanistically related tissues, namely, artery (aortic, coronary, or tibial), liver, and whole blood.50 Prebuilt prediction models, based on GTEx v8 multivariate adaptive shrinkage in R, were used to estimate variants’ weight on gene expression levels in chosen tissues.49-51 Because the reference models were created on the basis of the European-ancestry population, we limited the analysis to EUR-only GWAS results. S-PrediXcan results were evaluated using S-MultiXcan52 with significant TWAS signals determined using Bonferroni correction for the total number of genes across all models.

Fine mapping

TWAS fine mapping using FOCUS (Fine-mapping Of CaUsal gene Sets) was used to identify the likely causal gene under GWAS signals. FOCUS avoids false TWAS signals caused by coregulation and pleiotropic effects of variants at GWAS risk loci53 by modeling marginal TWAS z-scores of all genes in the same region considering variant LD correlations and tagged pleiotropic effects of variants on the trait. Given generated z-scores, the PIP for a gene to be causal is derived and then used to form a credible set of putative causal genes. GTEx v8 MASH-R models were used as the source of eQTL weights and the European-based PROCARDIS database as the reference for LD correlations. PIP ≥0.95 was used to identify a gene as putatively causal.

MVP PheWAS/Genetic risk score analysis

Genetic risk scores (GRSs) were derived using the independent variants identified by the GCTA analysis described above and as seen in supplemental Figure 3. Three scores were derived, (i) weighting by the variant β from the multipopulation mega-analysis, (ii) weighting by the variant β from the EUR-only meta-analysis, and (iii) weighting by the variant β from the AFR-only meta-analysis. GRSs were then standardized to standard deviation units. A PheWAS was performed for each of the 3 GRSs within EUR and AFR participants of the VA MVP,25 for International Classification of Diseases–based PheCodes54 with at least 500 cases. Logistic regression models were adjusted for age, sex, and the first 5 population-specific principal components, and statistical significance was determined on the basis of Bonferroni correction for the number of independent PheCodes (EUR PBonferroni = 5.18E-05; AFR PBonferroni = 7.25E-05) (see supplemental Data). Additional sensitivity analyses were completed by creating the GRS removing variants in (i) the FGG gene region or (ii) the fibrinogen gene cluster region.

Baseline characteristics

WGS and fibrinogen measures were available for 32 572 individuals across 13 TOPMed studies. Imputed genetic data and fibrinogen measures were available for 131 340 individuals within 39 additional CHARGE or TOPMed studies. A total of 163 912 individuals were included in the multipopulation mega-analysis (Table 1). The mean fibrinogen value across studies was 3.32 g/L. Mean values were slightly higher in African-ancestry individuals compared with European (AFR = 3.59; EUR = 3.30), but the 95% confidence intervals overlapped in TOPMed participants (AFR = 1.67-5.56; EUR = 1.44-4.93). No difference in mean was observed between studies measuring functional fibrinogen using Clauss methods and those measuring total fibrinogen (Table 1). The heritability estimate from EUR TOPMed studies with WGS was 20%, which aligns with the lower end of estimates from family and twin studies.

Single-variant analysis and aggregate tests

Multipopulation, single-variant mega-analysis identified 54 genetic loci associated with circulating fibrinogen (Figure 2; supplemental Table 1). Among these, 18 loci have not been identified in prior studies (Table 2; Figure 3). The TM6SF2 locus has been identified in a multiphenotype analysis leveraging fibrinogen and coronary artery disease variants,55 but not in a GWAS of fibrinogen alone. All 18 variants achieved nominal significance in a previously published analysis,18 and the direction of effect was consistent with our findings (Table 2). Associated regions contained an average of 21 SNPs in their 95% credible set (range, 1-93). Credible sets are summarized in supplemental Table 1, and full SNP lists are presented in supplemental Table 2. Approximate conditional analysis in GCTA revealed 6 loci harboring multiple conditionally distinct lead variants (Table 3; supplemental Table 3). At 4 loci with previously reported fibrinogen associations, FGG, PDLIM4, RPL22L1, and RAB37, we detected 7, 5, 3, and 2 distinct lead variants, respectively, exceeding the maximum from any prior report. supplemental Table 4 presents the LD between conditionally distinct lead variants and previously published top SNPs. Among newly associated loci, only SOCS3 and HPN contained multiple distinct lead variants.

Figure 2.

Mega-analysis single-variant results. Orange peaks are novel associated regions and are labeled with the names of genes in the region. Red line indicates genome-wide significance (P < 5E-09), and blue line indicates suggestive association (P < 1E-07).

Figure 2.

Mega-analysis single-variant results. Orange peaks are novel associated regions and are labeled with the names of genes in the region. Red line indicates genome-wide significance (P < 5E-09), and blue line indicates suggestive association (P < 1E-07).

Close modal
Table 2.

Novel regions associated with fibrinogen in single-variant test

SNPCHRPOS (b38)EANEAEAFβSEP valueQ P valueNo. (samples)DirectionGene regionTop variant consequencede Vries et al 2015
βP valueR2
rs149290349 43 224 818 0.068 0.036 0.005 9.62E-12 .102 163 060 +−−+ ZFP36L2; THADA; PLEKHH2 Missense (ZFP36L20.008 9.70E-06 0.87 
rs60064064 233 460 824 0.089 −0.028 0.005 3.90E-09 .018 150 506 −−+− SAG; DGKD; USP40 Intronic (DGKD−0.004 8.26E-03 0.90 
rs35053471 47 083 271 0.365 0.018 0.003 1.55E-10 .873 163 912 ++++ CCDC12; NBEAL2; SETD2 Intronic (SETD20.005 5.61E-07 0.86 
rs10936662 170 860 674 0.169 0.022 0.004 6.81E-10 .408 163 912 ++−+ RPL22L1; EIF5A2; SLC2A2 Intergenic 0.005 2.18E-04 0.91 
rs4565087 38 761 482 0.369 0.017 0.003 1.97E-09 .782 157 981 ++−+ KLF3; TLR10; TLR1; TLR6 Intergenic 0.005 2.75E-07 0.92 
rs157512 56 513 300 0.238 0.022 0.003 2.13E-12 .140 163 912 ++++ LINC01948; C5orf67 Intronic (C5orf670.004 4.66E-04 0.97 
rs9376090 135 090 090 0.235 −0.019 0.003 1.63E-09 .622 147 776 −−−− HBS1L Intergenic −0.005 4.97E-06 0.98 
rs6470350 125 315 303 0.511 0.019 0.003 1.91E-11 .281 148 283 ++−+ NSMCE2 Intronic 0.004 6.15E-05 0.99 
rs1543725 10 30 409 944 0.408 0.018 0.003 1.35E-10 .713 161 181 ++++ CCND3P1; MAP3K8 Intergenic 0.004 3.50E-05 0.94 
rs7298698 12 103 127 106 0.481 0.019 0.003 1.99E-12 .463 161 688 +−++ AC068643; C12orf42 Intronic (C12orf420.005 1.29E-07 0.99 
rs2239222 14 72 545 177 0.376 −0.018 0.003 1.53E-10 .002 147 776 −−−− RGS6 Intronic (RGS6−0.005 4.79E-07 0.95 
rs17580 14 94 380 925 0.039 0.045 0.007 3.70E-10 .291 163 770 ++−+ SERPINA6; SERPINA1 Missense (SERPINA10.011 6.56E-07 0.70 
rs4334315 16 79 722 300 0.303 0.020 0.003 2.21E-11 .723 163 912 ++++ LINC01229; MAFTRR Intronic (LINC01229 and MAFTRR0.005 2.84E-06 0.83 
rs11077357 17 78 347 520 0.767 0.023 0.004 1.35E-10 .706 147 384 ++−+ SOCS3 Intergenic 0.006 7.41E-04 0.49 
rs7507218 19 18 525 110 0.220 0.020 0.003 1.04E-09 .568 163 909 ++++ SSBP4; ISYNA1; ELL; FKBP8 Intergenic 0.004 6.68E-04 0.92 
rs1672981 19 35 056 147 0.916 0.034 0.005 4.07E-10 .136 148 280 +−++ HPN; HPN-AS1 Intronic (HPN0.007 2.48E-04 0.95 
rs34934360 19 45 895 731 0.112 −0.027 0.004 2.79E-10 .996 150 507 −−−− FOXA3; IRF2BP1; MYPOP; NANOS2 Intronic (MYPOP−0.007 4.37E-07 0.90 
rs1415771 20 35 146 690 0.471 −0.017 0.003 1.20E-09 .441 147 776 −−−− EDEM2; PROCR Intronic (EDEM2−0.002 3.38E-02 1.00 
SNPCHRPOS (b38)EANEAEAFβSEP valueQ P valueNo. (samples)DirectionGene regionTop variant consequencede Vries et al 2015
βP valueR2
rs149290349 43 224 818 0.068 0.036 0.005 9.62E-12 .102 163 060 +−−+ ZFP36L2; THADA; PLEKHH2 Missense (ZFP36L20.008 9.70E-06 0.87 
rs60064064 233 460 824 0.089 −0.028 0.005 3.90E-09 .018 150 506 −−+− SAG; DGKD; USP40 Intronic (DGKD−0.004 8.26E-03 0.90 
rs35053471 47 083 271 0.365 0.018 0.003 1.55E-10 .873 163 912 ++++ CCDC12; NBEAL2; SETD2 Intronic (SETD20.005 5.61E-07 0.86 
rs10936662 170 860 674 0.169 0.022 0.004 6.81E-10 .408 163 912 ++−+ RPL22L1; EIF5A2; SLC2A2 Intergenic 0.005 2.18E-04 0.91 
rs4565087 38 761 482 0.369 0.017 0.003 1.97E-09 .782 157 981 ++−+ KLF3; TLR10; TLR1; TLR6 Intergenic 0.005 2.75E-07 0.92 
rs157512 56 513 300 0.238 0.022 0.003 2.13E-12 .140 163 912 ++++ LINC01948; C5orf67 Intronic (C5orf670.004 4.66E-04 0.97 
rs9376090 135 090 090 0.235 −0.019 0.003 1.63E-09 .622 147 776 −−−− HBS1L Intergenic −0.005 4.97E-06 0.98 
rs6470350 125 315 303 0.511 0.019 0.003 1.91E-11 .281 148 283 ++−+ NSMCE2 Intronic 0.004 6.15E-05 0.99 
rs1543725 10 30 409 944 0.408 0.018 0.003 1.35E-10 .713 161 181 ++++ CCND3P1; MAP3K8 Intergenic 0.004 3.50E-05 0.94 
rs7298698 12 103 127 106 0.481 0.019 0.003 1.99E-12 .463 161 688 +−++ AC068643; C12orf42 Intronic (C12orf420.005 1.29E-07 0.99 
rs2239222 14 72 545 177 0.376 −0.018 0.003 1.53E-10 .002 147 776 −−−− RGS6 Intronic (RGS6−0.005 4.79E-07 0.95 
rs17580 14 94 380 925 0.039 0.045 0.007 3.70E-10 .291 163 770 ++−+ SERPINA6; SERPINA1 Missense (SERPINA10.011 6.56E-07 0.70 
rs4334315 16 79 722 300 0.303 0.020 0.003 2.21E-11 .723 163 912 ++++ LINC01229; MAFTRR Intronic (LINC01229 and MAFTRR0.005 2.84E-06 0.83 
rs11077357 17 78 347 520 0.767 0.023 0.004 1.35E-10 .706 147 384 ++−+ SOCS3 Intergenic 0.006 7.41E-04 0.49 
rs7507218 19 18 525 110 0.220 0.020 0.003 1.04E-09 .568 163 909 ++++ SSBP4; ISYNA1; ELL; FKBP8 Intergenic 0.004 6.68E-04 0.92 
rs1672981 19 35 056 147 0.916 0.034 0.005 4.07E-10 .136 148 280 +−++ HPN; HPN-AS1 Intronic (HPN0.007 2.48E-04 0.95 
rs34934360 19 45 895 731 0.112 −0.027 0.004 2.79E-10 .996 150 507 −−−− FOXA3; IRF2BP1; MYPOP; NANOS2 Intronic (MYPOP−0.007 4.37E-07 0.90 
rs1415771 20 35 146 690 0.471 −0.017 0.003 1.20E-09 .441 147 776 −−−− EDEM2; PROCR Intronic (EDEM2−0.002 3.38E-02 1.00 

CHR, chromosome; direction, effect direction from CHARGE EUR only, CHARGE AFR only, CHARGE HIS only, and TOPMed; EA, effect allele; EAF, effect allele frequency; NEA, noneffect allele; POS (b38), position in build 38; R2, imputation quality.

∗Absolute value of effect sizes (β) is not comparable between this study and de Vries et al due to differences in trait transformations before GWAS; deVries et al sample size = 120 246 (mean = 118 670, minimum = 102 767).

Figure 3.

Comparison of mega-analysis single-variant results to previous publications.

Figure 3.

Comparison of mega-analysis single-variant results to previous publications.

Close modal
Table 3.

Regions with multiple SNPs selected by GCTA (cojo-slct) using TOPMed multipopulation reference panel for LD

RegionGenes in regionSNPCPTIDrefAfreq_genobJbJ_sepJLD_rSNP consequence
14 RGS12; HGFAC; DOK7 rs3748034 chr4:3444364:G:T 0.121 0.025 0.004 1.56E-10 −0.086 Missense (HGFAC
rs16844401 chr4:3447925:G:A 0.059 0.045 0.005 4.01E-17 0.029 Missense (HGFAC
rs36205397 chr4:3468877:A:G 0.533 0.018 0.003 3.06E-10 0.000 Intronic (DOK7
16 FGB; FGG rs2227401 chr4:154565229:C:T 0.176 0.093 0.003 2.14E-165 −0.028 Intronic (FGB
rs6054 chr4:154568456:C:T 0.004 −0.385 0.022 2.21E-67 −0.011 Missense (FGB
rs2066874 chr4:154608429:T:C 0.008 −0.294 0.030 4.02E-22 −0.010 Intronic (FGG
rs148685782 chr4:154611883:G:C 0.003 −0.805 0.024 2.88E-237 −0.020 Missense (FGG
rs28577061 chr4:154614588:T:C 0.046 −0.089 0.013 1.96E-12 −0.030 Intergenic 
rs149748987 chr4:154618106:T:C 0.007 −0.179 0.015 2.96E-32 0.090 Intergenic 
rs6536024 chr4:154622217:T:C 0.478 −0.029 0.003 5.10E-25 0.000 Intergenic 
18 PDLIM4; SLC22A4; SLC22A5; IRF1; IL5; RAD50 rs549687735 chr5:132297674:G:A 0.032 0.079 0.012 1.52E-10 0.157 Intronic (SLC22A4
rs145432904 chr5:132454828:C:T 0.030 0.082 0.007 3.99E-32 −0.100 Intronic (IRF1-AS1
rs2706383 chr5:132456710:G:A 0.235 −0.065 0.003 1.95E-80 0.000 Intronic (IRF1-AS1
rs2706339 chr5:132464413:G:T 0.236 −0.065 0.003 9.23E-81 −0.100 Intronic (IRF1-AS1
rs79480807 chr5:132465298:G:A 0.029 0.082 0.007 2.16E-32 0.000 Intronic (IRF1-AS1
44 RAB37; SLC9A3R1; NAT9 rs4789661 chr17:74429020:G:A 0.635 −0.030 0.004 3.49E-14 0.526 Intergenic 
rs1868057 chr17:74720763:C:G 0.628 0.039 0.004 7.41E-21 0.000 Intronic (RAB37
45 SOCS3 rs11077357 chr17:78347520:G:C 0.761 0.023 0.004 9.10E-11 −0.010 Intergenic 
rs938351 chr17:78403323:C:T 0.602 0.018 0.003 2.32E-10 0.000 Intronic (PGS1
48 HPN; HPN-AS1 rs1672981 chr19:35056147:T:C 0.916 0.034 0.005 1.94E-10 0.021 Intergenic (HPN
rs2239943 chr19:35539605:T:C 0.597 −0.017 0.003 1.76E-09 0.000 Intergenic (GAPDHS
RegionGenes in regionSNPCPTIDrefAfreq_genobJbJ_sepJLD_rSNP consequence
14 RGS12; HGFAC; DOK7 rs3748034 chr4:3444364:G:T 0.121 0.025 0.004 1.56E-10 −0.086 Missense (HGFAC
rs16844401 chr4:3447925:G:A 0.059 0.045 0.005 4.01E-17 0.029 Missense (HGFAC
rs36205397 chr4:3468877:A:G 0.533 0.018 0.003 3.06E-10 0.000 Intronic (DOK7
16 FGB; FGG rs2227401 chr4:154565229:C:T 0.176 0.093 0.003 2.14E-165 −0.028 Intronic (FGB
rs6054 chr4:154568456:C:T 0.004 −0.385 0.022 2.21E-67 −0.011 Missense (FGB
rs2066874 chr4:154608429:T:C 0.008 −0.294 0.030 4.02E-22 −0.010 Intronic (FGG
rs148685782 chr4:154611883:G:C 0.003 −0.805 0.024 2.88E-237 −0.020 Missense (FGG
rs28577061 chr4:154614588:T:C 0.046 −0.089 0.013 1.96E-12 −0.030 Intergenic 
rs149748987 chr4:154618106:T:C 0.007 −0.179 0.015 2.96E-32 0.090 Intergenic 
rs6536024 chr4:154622217:T:C 0.478 −0.029 0.003 5.10E-25 0.000 Intergenic 
18 PDLIM4; SLC22A4; SLC22A5; IRF1; IL5; RAD50 rs549687735 chr5:132297674:G:A 0.032 0.079 0.012 1.52E-10 0.157 Intronic (SLC22A4
rs145432904 chr5:132454828:C:T 0.030 0.082 0.007 3.99E-32 −0.100 Intronic (IRF1-AS1
rs2706383 chr5:132456710:G:A 0.235 −0.065 0.003 1.95E-80 0.000 Intronic (IRF1-AS1
rs2706339 chr5:132464413:G:T 0.236 −0.065 0.003 9.23E-81 −0.100 Intronic (IRF1-AS1
rs79480807 chr5:132465298:G:A 0.029 0.082 0.007 2.16E-32 0.000 Intronic (IRF1-AS1
44 RAB37; SLC9A3R1; NAT9 rs4789661 chr17:74429020:G:A 0.635 −0.030 0.004 3.49E-14 0.526 Intergenic 
rs1868057 chr17:74720763:C:G 0.628 0.039 0.004 7.41E-21 0.000 Intronic (RAB37
45 SOCS3 rs11077357 chr17:78347520:G:C 0.761 0.023 0.004 9.10E-11 −0.010 Intergenic 
rs938351 chr17:78403323:C:T 0.602 0.018 0.003 2.32E-10 0.000 Intronic (PGS1
48 HPN; HPN-AS1 rs1672981 chr19:35056147:T:C 0.916 0.034 0.005 1.94E-10 0.021 Intergenic (HPN
rs2239943 chr19:35539605:T:C 0.597 −0.017 0.003 1.76E-09 0.000 Intergenic (GAPDHS

bJ, joint β; bJ_se, standard error of joint β; CPTID, chromosome:position (b38):allele1: allele 2; freq_geno, frequency of effect allele in reference sample; LD_r, linkage disequilibrium; pJ, joint P value; refA, reference/effect allele.

Among the 69 conditionally distinct lead variants associated with fibrinogen, 5 variants (rs10936662, rs28577061, rs11077357, rs7507218, and rs1672981) have a minor allele at least 10 percentage points more frequent in African ancestral populations compared with European (supplemental Table 3). At the FGG locus, GCTA identified a conditionally distinct lead variant (rs28577061), which has not been associated with fibrinogen in prior studies and is common in AFR but extremely rare or absent in other TOPMed populations (MAFAFR = 0.1801; MAFEUR = 0.008). At 4 loci, RPL22L1, HPN, SOCS3, and SSPB4, the primary lead variants are common in all assessed populations, but at increased frequency in African ancestry populations. Together, the 69 independent variants discovered increased the phenotypic variance explained for circulating fibrinogen across populations from 3.7%18 to 4.8%, with the fibrinogen gene cluster alone explaining 2.2%. Effect sizes were highly correlated between studies that measured functional fibrinogen and those that measured total fibrinogen (supplemental Figure 4; supplemental Table 5).

Aggregate tests using low-frequency and rare TOPMed WGS variants yielded associations in the fibrinogen gene cluster region: FGG was significant when aggregating LOF and LDM variants, whereas FGA was only significant when aggregating LOF variants and FGB with LDM variants. No genes were significant when aggregating all low-frequency and rare variants in the coding, promotor, or enhancer regions (supplemental Table 6). A list of variants in this region included in the aggregation tests is presented in supplemental Table 7.

Variant annotation

To characterize each genetic signal associated with fibrinogen, we queried all conditionally distinct variants and their LD proxies (r2 > 0.8 in TOPMed-based EUR and/or AFR ancestry reference panels),23,39 in multiple publicly available data sets. Most signals we identified contained previously reported lead variants for liver-enzyme measures, lipid measures, and/or blood-cell traits. Notably, 23 signals contained a previously reported lead variant for C-reactive protein (CRP).

VEP38 annotation shows that 18 signals contained at least 1 missense variant. Additionally, 13 signals contained variants with CADD PHRED scores exceeding 20, indicating the variant is in the top 1% of predicted deleterious mutations. SERPINA1, ZFP36L2, and TLR10 stand out as newly associated loci in this category. We also observed that several signals overlap potential regulatory regions in liver. A total of 52 signals (45 loci) contain at least 1 variant mapping to a “consensus” region of open chromatin in liver tissue samples, 42 signals overlap a GeneHancer regulatory element reported active in HepG2 hepatocytes, 5 signals harbor previously reported liver chromatin accessibility quantitative trait loci (QTL) variants, 6 signals hold GTEx liver expression QTL, and the primary signal in HPN contains a GTEx liver splice QTL. A summary of these annotations for each signal can be found in supplemental Table 8 and full results in supplemental Table 9.

Colocalization

Variant-level colocalization analysis in fastENLOC identified 153 variant-tissue pairs with evidence (SNP-level colocalization probability >0.1) for a shared genetic basis with GTEx eQTLs for 93 distinct genes in aortic artery, tibial artery, coronary artery, liver, and/or whole blood (supplemental Table 10). Regional analysis in the same set of tissues found 46 region-tissue pairs, implicated in regulation of 41 distinct genes, with evidence for statistical colocalization with fibrinogen regions (RCP > 0.5) (supplemental Table 11). We note that 5 of the 6 fibrinogen signals harboring sentinel GTEx liver eQTL variants statistically colocalize with the eQTL signals in fastENLOC, whereas the PLEC eQTL signal was at the significance threshold (RCP = 0.5).

Transcriptome-wide association study

Gene-tissue pairs across 5 tissues (aortic, coronary, or tibial artery, whole blood, and liver) were included in MetaXcan TWAS analyses for fibrinogen (supplemental Figure 5). Genetically determined expressions of 64 gene-tissue pairs were significantly associated with fibrinogen levels after Bonferroni correction and filtering for models with at least 2 contributing SNPs (supplemental Table 12). A total of 15 gene-tissue pairs identified by TWAS were further prioritized via FOCUS fine-mapping (supplemental Table 12). TNKS was the only gene prioritized by both TWAS and fine-mapping in liver analyses. Notably, this gene was further implicated in fibrinogen regulation through variant and region-based liver expression colocalization analysis (supplemental Table 11). In whole blood analyses, TWAS and fine-mapping prioritized AFT1, C5orf56, FGB, MS4A4E, and SLC22A5. Of these, AFT1 was further supported by variant-level colocalization analysis (supplemental Table 10).

Phenome-wide association study

Three fibrinogen GRSs were tested for association with 1426 PheCodes in EUR and 1061 PheCodes in AFR participants of the VA MVP (supplemental Table 13). Each score reached Bonferroni significance with multiple thrombotic and inflammatory disease phenotypes (nEUR = 13 PheCodes, nAFR = 1 PheCode; Table 4; supplemental Table 14). Top associations included venous thromboembolism and gout.

Table 4.

Association of TOPMed/CHARGE fibrinogen PRS with PheCodes in MVP

Trait informationMVP EURMVP AFR
PheCodeDisease categoryDescriptionNo. of cases/controlsPRS (MEGA)PRS (EUR)No. of cases/controlsPRS (MEGA)PRS (AFR)
ORP valueORP valueORP valueORP value
phe_452 Circulatory system Other venous embolism and thrombosis 26 792/421 526 0.952 2.26E-15  0.952 1.35E-15  7585/111 531 0.977 5.25E-02 0.972 1.76E-02  
phe_452_2 Circulatory system Deep vein thrombosis 14 944/438 829 0.941 9.78E-14  0.941 6.88E-14  4498/116 209 0.964 1.60E-02
 
0.962 1.00E-02§  
phe_274_1 Endocrine or metabolic Gout 42 682/406 941 1.031 2.96E-09  1.032 1.82E-09  14 511/104 430 1.022 1.51E-02  1.012 1.98E-01 
phe_274 Endocrine or metabolic Gout and other crystal arthrop 44 888/402 674 1.030 4.02E-09  1.031 2.57E-09  14 941/103 648 1.022 1.43E-02  1.012 1.92E-01 
phe_681 Dermatologic Superficial cellulitis and abscess 74 338/335 942 0.979 1.38E-07  0.979 1.80E-07  19 580/88 222 0.989 1.51E-01 0.988 1.38E-01 
phe_1089 Other Acquired absence of limb 5 466/454 009 0.940 3.54E-06  0.940 3.83E-06  1675/120 554 0.998 9.50E-01 1.010 6.93E-01 
phe_681_5 Dermatologic Cellulitis and abscess of leg, except foot 20 789/421 257 0.970 1.37E-05  0.970 1.35E-05  3302/115 194 1.000 9.85E-01 1.004 8.38E-01 
phe_280 Hematopoietic Iron-deficiency anemias 35 686/404 586 1.024 1.94E-05  1.024 3.20E-05  14 819/100 241 1.038 3.97E-05  1.034 1.71E-04§  
phe_707_2 Dermatologic Chronic ulcer of leg or foot 18 477/432 947 0.969 2.00E-05  0.969 2.37E-05  4470/115 706 0.994 6.73E-01 0.993 6.54E-01 
phe_286_81 Hematopoietic Primary hypercoagulable state 2 498/457 232 0.921 2.51E-05  0.920 2.03E-05  529/121 823 0.957 3.11E-01 0.947 2.07E-01 
phe_286_2 Hematopoietic Encounter for long-term (current) use of anticoagulants 42 101/409 581 0.979 3.04E-05  0.978 2.00E-05  7617/112 768 0.963 1.49E-03§  0.960 5.44E-04§  
phe_286 Hematopoietic Coagulation defects 12 517/436 641 0.963 3.30E-05  0.963 3.18E-05  2804/116 917 0.936 4.47E-04§  0.934 3.01E-04§  
phe_286_8 Hematopoietic Hypercoagulable state 2 691/456 755 0.925 3.52E-05  0.925 3.18E-05  586/121 682 0.964 3.70E-01 0.952 2.35E-01 
Trait informationMVP EURMVP AFR
PheCodeDisease categoryDescriptionNo. of cases/controlsPRS (MEGA)PRS (EUR)No. of cases/controlsPRS (MEGA)PRS (AFR)
ORP valueORP valueORP valueORP value
phe_452 Circulatory system Other venous embolism and thrombosis 26 792/421 526 0.952 2.26E-15  0.952 1.35E-15  7585/111 531 0.977 5.25E-02 0.972 1.76E-02  
phe_452_2 Circulatory system Deep vein thrombosis 14 944/438 829 0.941 9.78E-14  0.941 6.88E-14  4498/116 209 0.964 1.60E-02
 
0.962 1.00E-02§  
phe_274_1 Endocrine or metabolic Gout 42 682/406 941 1.031 2.96E-09  1.032 1.82E-09  14 511/104 430 1.022 1.51E-02  1.012 1.98E-01 
phe_274 Endocrine or metabolic Gout and other crystal arthrop 44 888/402 674 1.030 4.02E-09  1.031 2.57E-09  14 941/103 648 1.022 1.43E-02  1.012 1.92E-01 
phe_681 Dermatologic Superficial cellulitis and abscess 74 338/335 942 0.979 1.38E-07  0.979 1.80E-07  19 580/88 222 0.989 1.51E-01 0.988 1.38E-01 
phe_1089 Other Acquired absence of limb 5 466/454 009 0.940 3.54E-06  0.940 3.83E-06  1675/120 554 0.998 9.50E-01 1.010 6.93E-01 
phe_681_5 Dermatologic Cellulitis and abscess of leg, except foot 20 789/421 257 0.970 1.37E-05  0.970 1.35E-05  3302/115 194 1.000 9.85E-01 1.004 8.38E-01 
phe_280 Hematopoietic Iron-deficiency anemias 35 686/404 586 1.024 1.94E-05  1.024 3.20E-05  14 819/100 241 1.038 3.97E-05  1.034 1.71E-04§  
phe_707_2 Dermatologic Chronic ulcer of leg or foot 18 477/432 947 0.969 2.00E-05  0.969 2.37E-05  4470/115 706 0.994 6.73E-01 0.993 6.54E-01 
phe_286_81 Hematopoietic Primary hypercoagulable state 2 498/457 232 0.921 2.51E-05  0.920 2.03E-05  529/121 823 0.957 3.11E-01 0.947 2.07E-01 
phe_286_2 Hematopoietic Encounter for long-term (current) use of anticoagulants 42 101/409 581 0.979 3.04E-05  0.978 2.00E-05  7617/112 768 0.963 1.49E-03§  0.960 5.44E-04§  
phe_286 Hematopoietic Coagulation defects 12 517/436 641 0.963 3.30E-05  0.963 3.18E-05  2804/116 917 0.936 4.47E-04§  0.934 3.01E-04§  
phe_286_8 Hematopoietic Hypercoagulable state 2 691/456 755 0.925 3.52E-05  0.925 3.18E-05  586/121 682 0.964 3.70E-01 0.952 2.35E-01 

OR, odds ratio per SD increase in the PRS.

∗Analyses were only run if there were >500 cases or controls for a specific PheCode. Bonferroni threshold was determine separately in each ancestry group. EUR had 1426 PheCodes analyzed with an estimated 965 independent traits; therefore, Bonferroni = 0.05/965 = 5.18E-05. AFR had 1061 PheCodes analyzed with an estimated 690 independent traits; therefore, Bonferroni = 0.05/690 = 7.25E-05.

P ≤ Bonferroni threshold.

§

01 ≤ P < Bonferroni.

05 ≤ P < .01.

To further assess which variants within the GRS may drive individual associations, we queried each variant against the significant PheCode (supplemental Table 15). As anticipated, for “Circulatory System” and “Hematopoietic” PheCodes, most of the signal came from variants in the fibrinogen gene cluster, whereas significant variants across the GRS were associated with gout and dermatologic traits. Sensitivity analyses with PRSs removing variants (i) in the FGG gene region (associated with γ prime fibrinogen) or (ii) in the full fibrinogen gene cluster did not substantially change the odds ratio, but did impact the significance (supplemental Table 16). PheCodes relating to gout (phe_274, phe_274_1) and superficial cellulitis and abscess (phe_1089) became more significant, whereas PheCodes relating to coagulation defects and hypercoagulable state (phe_286, phe_286_8, and phe_286_81) became less significant.

Magnetic resonance (MR) analysis of fibrinogen and gout failed to provide evidence for a causal effect of fibrinogen levels on gout, and multivariable MR analysis incorporating CRP levels to account for possible confounding was inconclusive (supplemental Table 17).

Herein, we used WGS and genotype data from diverse participants to identify 69 conditionally distinct genetic variants across 54 loci associated with circulating fibrinogen. Our results corroborate previous reports that fibrinogen is highly polygenic and advance the field by identifying new variant associations, including rare variants and variants most prevalent in underrepresented populations. On the basis of results of in silico characterization, we suggest some of the new genetic regulators we identified may act directly to regulate coagulation factors (such as factor VII and factor XI), whereas others may impact fibrinogen broadly through pathways altering liver metabolism, inflammation, and immune function, as reflected in the broad overlap between fibrinogen-associated signals and prior analyses for liver-related traits and blood and immune-cell counts.

Population-differentiated variants among new associations

We identified several novel genetic associations driven by variants with higher allele frequencies in non-European populations, validating that our approach improved detection of putative genetic regulators most common in underrepresented populations. To our knowledge, we identified the first common variant-fibrinogen association driven almost entirely by African ancestry participants at an intergenic region near FGG. Previous African ancestry driven variants were rare in African and not present in European populations.19 Additionally, expanded representation of both African and European populations allowed us to detect 4 new signals of small effect, led by common variants substantially more frequent in those with African ancestry. Detection of population-differentiated associations indicates that for variants with higher predicted effects, such as those within the fibrinogen gene cluster, expanded sample sizes are now reaching power to detect variant associations driven by underrepresented populations. We further identified 4 common European-driven signals that are rare or uncommon in African ancestry populations, suggesting that genomic signals for circulating fibrinogen are not saturated in any ancestral population.56,57 This is also reflected by the relatively modest variance explained (4.8%) vs estimates of total fibrinogen heritability (30%-50%).12,13,17 Increased diversity and larger sample sizes are still needed to help close this gap.

Newly identified potential coagulation pathway interactors

Three novel regions (SERPINA1, ZFP36L2, and TLR10) harbor deleterious missense variants in genes with plausible connections to coagulation and/or inflammation. In the SERPINA1 gene, we identified a rare missense variant (rs17580) predicted to be highly deleterious (CADD Phred score = 32). SERPINA1 encodes α-1-antitrypsin, which protects other proteins and tissues from serine protease degradation via direct binding inhibition.58 Like fibrinogen, α-1-antitrypsin is synthesized in hepatocytes in response to IL-6 and IL-1 inflammatory pathways.59 Severe α-1-antitrypsin deficiency is associated with liver dysfunction and emphysema related to a lack of inhibition of neutrophil elastase.60 The association of SERPINA1 with fibrinogen levels may reflect α-1-antitrypsin involvement in inflammatory pathways, or a more direct relationship between these proteins. Although in vitro assays have suggested α-1-antitrypsin can bind to plasma fibrinogen and be incorporated into fibrin networks,58 little is known about the functional implications of these interactions and whether it also influences fibrin(ogen) degradation.

Zinc Finger Protein (ZFP)36L2 and toll-like receptor 10 (TLR10) are broadly linked to inflammatory pathways. Although ZFP36L2 is largely uncharacterized, the ZFP36L2 missense variant we observed has previously been associated with blood cell count and morphology traits,61-64 and studies in mice show ZFP36L2 regulates blood cell development and adipogenesis.65 Proteins of the ZFP36 family regulate transcript abundance through binding AU-rich elements to target transcripts for decay.66 Notably, ZFP36 (tristetraprolin) family proteins are known to modulate transcript abundance of the inflammatory cytokine tumor necrosis factor-α,67 which induces both the coagulation cascade and complement system.68,69TLR10 encodes a TLR protein. Although TLR activation generally contributes to inflammation, immune responses, and activation of coagulation cascades, little is known about TLR10 specifically.70 Although TLR10 may exert a protective effect against inflammation,71,72 more work is needed to elucidate mechanistic links between this protein and coagulation.

Putative fibrinogen regulatory signals

Although the missense variants highlight intriguing new gene targets for future functional studies, most signals we identified are driven by common noncoding variants with small effect sizes. Many of these noncoding signals overlap HepG2-active regulatory regions, and a subset of signals overlap liver chromatin accessibility, expression, and/or splice QTL signals, suggesting these variants may exert subtle regulatory effects on circulating fibrinogen levels. Notably, at 2 newly associated loci, HPN and SOCS3, we identified 2 conditionally distinct variants, each with distinct functional annotations.

At the HPN locus, the primary signal, which maps to an intronic region of HPN, contains a liver splice QTL for HPN. HPN encodes hepsin, a type II transmembrane serine protease with “enhanced” expression in the liver (according to the Human Protein Atlas), believed to function in macromolecular metabolism.73 Interestingly, studies in zebrafish and mammalian cell lines suggest hepsin activates coagulation factor VII.74,75 Although mouse studies have not conclusively demonstrated hepsin’s involvement in coagulation, these studies have established hepsin’s involvement in regulating liver metabolism via hepatocyte growth factor and Met signaling pathways.73,76-78 The secondary signal at this locus maps to an intergenic region and contains a liver eQTL for a nearby gene, TMEM147. TMEM147, which was also prioritized in liver, whole blood, and aortic artery TWAS analyses, encodes a widely expressed endoplasmic reticulum transmembrane protein implicated in various metabolic processes, including calcium transport.79 Although it is unclear whether the 2 signals in this region influence fibrinogen through altered splicing and expression patterns of HPN and TMEM147 in the liver, these signals provide a compelling starting point for future functional studies.

Similarly, among the 2 independent, common-variant signals in the SOCS3, PGS1 locus on chromosome 17, the secondary signal houses a previously identified sentinel variant for altered chromatin accessibility in liver tissue. This variant is of particular interest given its proximity to SOCS3, a “suppressor of cytokine signaling” known to act upstream of IL-6 in the acute-phase response pathway that induces fibrinogen.2 It is possible that the secondary signal at this locus is capturing genetic variation that modulates the accessibility of the SOCS3 gene, and potentially other nearby genes, in liver or other tissues, leading to downstream impacts on fibrinogen levels. SOCS3 methylation was recently associated with circulating fibrinogen levels in an epigenome-wide association study in the CHARGE consortium80 with the associated probe within 11 kb of our best SOCS3 GWAS SNP, reinforcing the idea that chromatin accessibility may be at play.

PheWAS

Results of the PheWAS in MVP yielded expected associations with venous thromboembolism and several hematopoietic traits. However, the direction of the association within bleeding and thrombosis phenotypes was often opposite to the direction we expected given total fibrinogen’s procoagulant function (ie, typically increased genetically predicted fibrinogen is associated with decreased risk of bleeding and increased risk of thrombosis). Although seemingly paradoxical, this finding is in line with what has been observed in patients with congenital fibrinogen deficiency. This rare, life-threatening bleeding disorder results from a complete or partial loss of fibrinogen, and/or the presence of dysfunctional fibrinogen.2,81 In patients with complete loss of fibrinogen, not only has increased bleeding (from loss of fibrin formation) been reported, but also increased risk of thrombosis (hypothesized to result from loss of the anticoagulant properties of the γ' isoform), demonstrating complex and sometimes competing effects of fibrinogen isoforms on coagulation biology.82 A previous MR study observed an inverse association between total fibrinogen levels with venous thromboembolism risk.9 We tested the hypothesis that this inverse association in our PheWAS was driven by the alternatively spliced γ prime fibrinogen isoform, which has established anticoagulant properties,83 but removing the FGG locus SNPs from the tested PRS did not alter the direction of effect we observed. Our hypothesis is thus that genetically driven increases in total fibrinogen are accompanied by increases in γ prime fibrinogen, and that the antithrombotic effect of γ prime fibrinogen compensates for the prothrombotic effect of other isoforms or of total fibrinogen.

Another unexpected finding from the PheWAS was a positive association between genetically predicted total fibrinogen and gout. Interestingly, this finding is in line with emerging literature, which has shown that patients with active gout have increased thrombin generation markers.84,85 Our MR analysis did not support a causal association of fibrinogen on gout, and multivariable Mendelian randomization analysis to investigate if inflammation plays a profound role in the association between fibrinogen and gout (using CRP as a proxy) was inconclusive. Given the extensive overlap between our signals and previously reported GWAS signals for phenotypes reflecting liver health and inflammation, such as liver enzyme and lipid measures, we suggest that this association may be capturing variant impacts on broader liver metabolic pathways.

In conclusion, we identified 18 novel loci, collectively harboring 20 distinct variants, associated with fibrinogen measure. We report the first common African-driven fibrinogen association, and several additional associated variants with population-differentiated genetic architecture. Furthermore, we demonstrate overlap between these signals and liver regulatory elements, as well as GWAS phenotypes reflecting altered liver metabolism and inflammation. Future studies investigating coregulation and epistatic effects will likely provide new insight on the shared genetic architecture, and biological interplay, of hemostasis and inflammation.

The authors gratefully acknowledge the studies and participants who provided biological samples and data for TOPMed.

Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Institutes of Health (NIH), National Heart, Lung, and Blood Institute (NHLBI). See the TOPMed Omics Support Table in the supplemental Data for study-specific omics support information. Core support, including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering, was provided by the TOPMed Informatics Research Center (NIH, NHLBI grant 3R01HL-117626-02S1; contract HHSN268201800002I). Core support, including phenotype harmonization, data management, sample-identity quality control, and general program coordination, was provided by the TOPMed Data Coordinating Center (NIH, NHLBI grants R01HL-120393; U01HL-120393; contract HHSN268201800001I). CHARGE is supported by NIH, NHLBI grant R01HL-105756, and the CHARGE and TOPMed Hemostasis Working Groups by NIH, NHLBI grants R01HL-134894, R01HL-139553, and R01HL-141291. This research is based on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration, and was supported by award I01-BX004821. The study was supported by the Novo Nordisk Foundation (grant NNF18CC0034900). D.-A.T. was supported by the EPIDEMIOM-VT Senior Chair of Excellence from the University of Bordeaux initiative of Excellence. M.S.-L. is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CPII22/00007) and cofinanced by the European Social Fund. Additional study-specific funding and acknowledgments can be found in the supplemental Data. The Genotype-Tissue Expression Project was supported by the Common Fund of the NIH Office of the Director, and by the NIH, National Cancer Institute, NIH, National Human Genome Research Institute, NIH, NHLBI, NIH, National Institute on Drug Abuse, NIH, National Institute of Mental Health, and NIH, National Institute of Neurological Disorders and Stroke.

This publication does not represent the views of the Department of Veteran Affairs, the US National Institutes of Health, the National Heart, Lung, and Blood Institute, the US Department of Health and Human Services, or the US government.

Contribution: L.M.R., J.A.B., L.A., D.I.C., M.-H.C., J.P.L., O. Polasek, J.I.R., E.d.G., J.-F.D., L.E., N.F., M.G., A.L., S.S.R., F.R.R., I.R., J.C.S., L.C.B., A.B., H.C., K.C., J.E.C., M.D., P.E., M.N., V.O., B.M.P., J.M.S., D.J.S., A.v.H., H.W., W.F.W., Y.B.-S., J.B., D.B., S.R.C., J.G.E., E.F., C.H., M.A.I., J.W.J., S.L.R.K., L.A.L., R.A.M., B.D.M., D.O.M.-K., P.-E.M., P.P.P., A.R., P.M.R., T.D.S., N.J.W., J.F.W., D.-A.T., A.D.J., P.S.d.V., A.C.M., and N.L.S. participated in the design and/or funding of the contributing studies; J.E.H., L.M.R., L.R.Y., L.A., L.F.B., R.P.B., G.D.C., J.L., J.P.L., R.L.-G., M.M., O. Polasek, M.S., P.S., M.H.C., P.C., E.d.G., N.F., M.G., A.G., H.G., T.H., T.K., J.L., A.L., S.N., F.R.R., I.R., K.A.R., J.C.S., F.J.A.v.R., H.W., W.Z.A.B., B.E.C., K.C., J.D.C., M.P.M.d.M., M.D., P.E., C.F., N.G., S.H.E., I.K., M.N., J.R.O., V.O., B.M.P., K.R., J.A.S., D.J.S., A.v.H., G.W., Y.B.-S., J.B., D.B., S.R.C., J.G.E., E.F., T.H., S.L.R.K., L.A.L., B.D.M., P.-E.M., O. Pedersen, S.R., P.M.R., E.K.S., N.J.W., J.F.W., P.S.d.V., M.S.-L., A.C.M., and N.L.S. participated in phenotype data acquisition and/or quality control; L.R.Y., L.A., G.D.C., D.I.C., M.-H.C., D.B.E., J.H., J.-J.H., M.E.K., N.-Q.L., J.L., R.L.-G., M.M., A.M.-P., A.R., B.A.T.R., M.S., P.S., S.T., S.W., M.Z., P.A., M.H.C., G.D., E.d.G., J.-F.D., H.G., T.O.K., J.L., A.L., S.N., F.P.-V., F.R.R., K.A.R., F.J.A.v.R., H.W., W.Z., B.E.C., J.E.C., C.F., N.G., S.H.E., C.M., J.R.O., V.O., B.M.P., K.R., J.A.S., G.W., J.B., D.B., A.D., J.G.E., E.F., M.F., T.H., C.H., J.W.J., S.L.R.K., R.A.M., B.D.M., D.O.M.-K., P.-E.M., O. Pedersen, S.R., P.M.R., E.K.S., U.V., J.F.W., D.-A.T., A.D.J., M.S.-L., and A.C.M. participated in genotype data acquisition and/or quality control; J.E.H., J.N., J.H., A.S.H., L.R.Y., J.A.B., F.T., L.F.B., G.D.C., M.-H.C., D.B.E., M.G., J.-J.H., M.E.K., N.-Q.L., J.P.L., R.L.-G., J.L., A.M., M.M., R.E.M., A.M.-P., A.R., B.A.T.R., M.S., P.S., S.T., S.W., M.Z., P.A., G.D., G.E.D., M.G., P.K.J., S.N., R.N., F.P.-V., K.A.R., M.R.B., J.S.F., C.F., X.G., C.K., J.R.O., D.B., A.D., C.H., R.A.M., B.D.M., A.R., U.V., J.Y., D.-A.T., A.D.J., P.S.d.V., M.S.-L., A.C.M., and N.L.S. participated in data analysis and/or interpretation; and J.E.H., J.N., J.H., P.S.d.V., M.S.-L., A.C.M., and N.L.S. participated in drafting the initial manuscript; and all authors participated in critical review of the manuscript.

Conflict-of-interest disclosure: L.R. is a consultant for the TOPMed Administrative Coordinating Center (through WeStat). R.L.-G. is a part-time consultant for Metabolon, Inc. M.C. has received grant support from Bayer. B.P. serves on the Steering Committee of the Yale Open Data Access Project, funded by Johnson & Johnson. In the past 3 years, E.K.S. has received grant support from Bayer. The remaining authors declare no competing financial interests.

A complete list of the members of the VA Million Veteran Program and the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) Consortium appears in the supplemental Data.

Correspondence: Jennifer E. Huffman, 2 Ave de Lafayette, ATTN: VA MAVERIC, Boston, MA 02110; email: jennifer.huffman2@va.gov.

1.
Wolberg
AS
,
Sang
Y
.
Fibrinogen and factor XIII in venous thrombosis and thrombus stability
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
8
):
931
-
941
.
2.
Pieters
M
,
Wolberg
AS
.
Fibrinogen and fibrin: an illustrated review
.
Res Pract Thromb Haemost
.
2019
;
3
(
2
):
161
-
172
.
3.
Vilar
R
,
Fish
RJ
,
Casini
A
,
Neerman-Arbez
M
.
Fibrin(ogen) in human disease: both friend and foe
.
Haematologica
.
2020
;
105
(
2
):
284
-
296
.
4.
Danesh
J
,
Lewington
S
;
Fibrinogen Studies Collaboration
.
Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis
.
JAMA
.
2005
;
294
(
14
):
1799
-
1809
.
5.
Machlus
KR
,
Cardenas
JC
,
Church
FC
,
Wolberg
AS
.
Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice
.
Blood
.
2011
;
117
(
18
):
4953
-
4963
.
6.
Vilar
R
,
Lukowski
SW
,
Garieri
M
,
Di Sanza
C
,
Neerman-Arbez
M
,
Fish
RJ
.
Chemical modulators of fibrinogen production and their impact on venous thrombosis
.
Thromb Haemost
.
2021
;
121
(
4
):
433
-
448
.
7.
Sabater-Lleal
M
,
Huang
J
,
Chasman
D
, et al
.
Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease
.
Circulation
.
2013
;
128
(
12
):
1310
-
1324
.
8.
Ward-Caviness
CK
,
de Vries
PS
,
Wiggins
KL
, et al
.
Mendelian randomization evaluation of causal effects of fibrinogen on incident coronary heart disease
.
PLoS One
.
2019
;
14
(
5
):
e0216222
.
9.
Maners
J
,
Gill
D
,
Pankratz
N
, et al
.
A Mendelian randomization of γ’ and total fibrinogen levels in relation to venous thromboembolism and ischemic stroke
.
Blood
.
2020
;
136
(
26
):
3062
-
3069
.
10.
de Maat
MPM
,
Bladbjerg
EM
,
Hjelmborg
JvB
,
Bathum
L
,
Jespersen
J
,
Christensen
K
.
Genetic influence on inflammation variables in the elderly
.
Arterioscler Thromb Vasc Biol
.
2004
;
24
(
11
):
2168
-
2173
.
11.
Sas
AA
,
Rijsdijk
FV
,
Ormel
J
,
Snieder
H
,
Riese
H
.
The relationship between neuroticism and inflammatory markers: a twin study
.
Twin Res Hum Genet
.
2014
;
17
(
3
):
177
-
182
.
12.
Williams
PT
.
Quantile-specific heritability of plasma fibrinogen concentrations
.
PLoS One
.
2022
;
17
(
1
):
e0262395
.
13.
de Lange
M
,
Snieder
H
,
Ariëns
RA
,
Spector
TD
,
Grant
PJ
.
The genetics of haemostasis: a twin study
.
Lancet
.
2001
;
357
(
9250
):
101
-
105
.
14.
Kaptoge
S
,
White
IR
,
Thompson
SG
, et al;
Fibrinogen Studies Collaboration
.
Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: individual participant meta-analysis of 154,211 adults in 31 prospective studies: the fibrinogen studies collaboration
.
Am J Epidemiol
.
2007
;
166
(
8
):
867
-
879
.
15.
Folsom
AR
,
Qamhieh
HT
,
Flack
JM
, et al
.
Plasma fibrinogen: levels and correlates in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study
.
Am J Epidemiol
.
1993
;
138
(
12
):
1023
-
1036
.
16.
Lutsey
PL
,
Cushman
M
,
Steffen
LM
, et al
.
Plasma hemostatic factors and endothelial markers in four racial/ethnic groups: the MESA study
.
J Thromb Haemost
.
2006
;
4
(
12
):
2629
-
2635
.
17.
Ding
K
,
Feng
D
,
de Andrade
M
, et al
.
Genomic regions that influence plasma levels of inflammatory markers in hypertensive sibships
.
J Hum Hypertens
.
2008
;
22
(
2
):
102
-
110
.
18.
de Vries
PS
,
Chasman
DI
,
Sabater-Lleal
M
, et al
.
A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration
.
Hum Mol Genet
.
2016
;
25
(
2
):
358
-
370
.
19.
Huffman
JE
,
de Vries
PS
,
Morrison
AC
, et al
.
Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF
.
Blood
.
2015
;
126
(
11
):
e19
-
e29
.
20.
Wojcik
GL
,
Fuchsberger
C
,
Taliun
D
, et al
.
Imputation-aware tag SNP selection to improve power for large-scale, multi-ethnic association studies
.
G3 (Bethesda)
.
2018
;
8
(
10
):
3255
-
3267
.
21.
Kowalski
MH
,
Qian
H
,
Hou
Z
, et al
.
Use of ∖textgreater100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
.
PLoS Genet
.
2019
;
15
(
12
):
e1008500
.
22.
de Vries
PS
,
Sabater-Lleal
M
,
Chasman
DI
, et al
.
Comparison of HapMap and 1000 Genomes reference panels in a large-scale genome-wide association study
.
PLoS One
.
2017
;
12
(
1
):
e0167742
.
23.
Taliun
D
,
Harris
DN
,
Kessler
MD
, et al
.
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
.
Nature
.
2021
;
590
(
7845
):
290
-
299
.
24.
Psaty
BM
,
O’Donnell
CJ
,
Gudnason
V
, et al
.
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts
.
Circ Cardiovasc Genet
.
2009
;
2
(
1
):
73
-
80
.
25.
Gaziano
JM
,
Concato
J
,
Brophy
M
, et al
.
Million Veteran Program: a mega-biobank to study genetic influences on health and disease
.
J Clin Epidemiol
.
2016
;
70
:
214
-
223
.
26.
Committee on the Use of Race, Ethnicity, and Ancestry as Population Descriptors in Genomics Research, Board on Health Sciences Policy
Committee on Population
. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field.
National Academies Press (US)
;
2023
.
27.
Clauss
A
.
Rapid physiological coagulation method in determination of fibrinogen [in German]
.
Acta Haematol
.
1957
;
17
(
4
):
237
-
246
.
28.
Brody
JA
,
Morrison
AC
,
Bis
JC
, et al
.
Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology
.
Nat Genet
.
2017
;
49
(
11
):
1560
-
1563
.
29.
McCarthy
S
,
Das
S
,
Kretzschmar
W
, et al
.
A reference panel of 64,976 haplotypes for genotype imputation
.
Nat Genet
.
2016
;
48
(
10
):
1279
-
1283
.
30.
Chen
H
,
Huffman
JE
,
Brody
JA
, et al
.
Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies
.
Am J Hum Genet
.
2019
;
104
(
2
):
260
-
274
.
31.
Winkler
TW
,
Day
FR
,
Croteau-Chonka
DC
, et al
.
Quality control and conduct of genome-wide association meta-analyses
.
Nat Protoc
.
2014
;
9
(
5
):
1192
-
1212
.
32.
Mägi
R
,
Morris
AP
.
GWAMA: software for genome-wide association meta-analysis
.
BMC Bioinf
.
2010
;
11
:
288
.
33.
Wu
Y
,
Zheng
Z
,
Visscher
PM
,
Yang
J
.
Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data
.
Genome Biol
.
2017
;
18
(
1
):
86
.
34.
Yang
J
,
Ferreira
T
,
Morris
AP
, et al
.
Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
.
Nat Genet
.
2012
;
44
(
4
):
369
-
375
. S1-3.
35.
Yang
J
,
Lee
SH
,
Goddard
ME
,
Visscher
PM
.
GCTA: a tool for genome-wide complex trait analysis
.
Am J Hum Genet
.
2011
;
88
(
1
):
76
-
82
.
36.
Maller
JB
,
McVean
G
;
Wellcome Trust Case Control Consortium
.
Bayesian refinement of association signals for 14 loci in 3 common diseases
.
Nat Genet
.
2012
;
44
(
12
):
1294
-
1301
.
37.
Shim
H
,
Chasman
DI
,
Smith
JD
, et al
.
A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians
.
PLoS One
.
2015
;
10
(
4
):
e0120758
.
38.
McLaren
W
,
Gil
L
,
Hunt
SE
, et al
.
The ensembl variant effect predictor
.
Genome Biol
.
2016
;
17
(
1
):
122
.
39.
Huang
L
,
Rosen
JD
,
Sun
Q
, et al
.
TOP-LD: a tool to explore linkage disequilibrium with TOPMed whole-genome sequence data
.
Am J Hum Genet
.
2022
;
109
(
6
):
1175
-
1181
.
40.
Rentzsch
P
,
Witten
D
,
Cooper
GM
,
Shendure
J
,
Kircher
M
.
CADD: predicting the deleteriousness of variants throughout the human genome
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D886
-
D894
.
41.
Kircher
M
,
Witten
DM
,
Jain
P
,
O'Roak
BJ
,
Cooper
GM
,
Shendure
J
.
A general framework for estimating the relative pathogenicity of human genetic variants
.
Nat Genet
.
2014
;
46
(
3
):
310
-
315
.
42.
Fadista
J
,
Oskolkov
N
,
Hansson
O
,
Groop
L
.
LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals
.
Bioinformatics
.
2017
;
33
(
4
):
471
-
474
.
43.
Ng
PC
,
Henikoff
S
.
Predicting deleterious amino acid substitutions
.
Genome Res
.
2001
;
11
(
5
):
863
-
874
.
44.
Adzhubei
IA
,
Schmidt
S
,
Peshkin
L
, et al
.
A method and server for predicting damaging missense mutations
.
Nat Methods
.
2010
;
7
(
4
):
248
-
249
.
45.
Adzhubei
I
,
Jordan
DM
,
Sunyaev
SR
. Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics.
2013
. Chapter 7:Unit 7.20.
46.
Paysan-Lafosse
T
,
Blum
M
,
Chuguransky
S
, et al
.
InterPro in 2022
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D418
-
D427
.
47.
Pividori
M
,
Rajagopal
PS
,
Barbeira
A
, et al
.
PhenomeXcan: mapping the genome to the phenome through the transcriptome
.
Sci Adv
.
2020
;
6
(
37
):
eaba2083
.
48.
Wen
X
,
Pique-Regi
R
,
Luca
F
.
Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization
.
PLoS Genet
.
2017
;
13
(
3
):
e1006646
.
49.
Gamazon
ER
,
Wheeler
HE
,
Shah
KP
, et al
.
A gene-based association method for mapping traits using reference transcriptome data
.
Nat Genet
.
2015
;
47
(
9
):
1091
-
1098
.
50.
Barbeira
AN
,
Dickinson
SP
,
Bonazzola
R
, et al
.
Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
.
Nat Commun
.
2018
;
9
(
1
):
1825
.
51.
Barbeira
AN
,
Bonazzola
R
,
Gamazon
ER
, et al
.
Exploiting the GTEx resources to decipher the mechanisms at GWAS loci
.
Genome Biol
.
2021
;
22
(
1
):
49
.
52.
Barbeira
AN
,
Pividori
M
,
Zheng
J
,
Wheeler
HE
,
Nicolae
DL
,
Im
HK
.
Integrating predicted transcriptome from multiple tissues improves association detection
.
PLoS Genet
.
2019
;
15
(
1
):
e1007889
.
53.
Mancuso
N
,
Freund
MK
,
Johnson
R
, et al
.
Probabilistic fine-mapping of transcriptome-wide association studies
.
Nat Genet
.
2019
;
51
(
4
):
675
-
682
.
54.
Denny
JC
,
Ritchie
MD
,
Basford
MA
, et al
.
PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations
.
Bioinformatics
.
2010
;
26
(
9
):
1205
-
1210
.
55.
Temprano-Sagrera
G
,
Sitlani
CM
,
Bone
WP
, et al
.
Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations
.
J Thromb Haemost
.
2022
;
20
(
6
):
1331
-
1349
.
56.
Yengo
L
,
Sidorenko
J
,
Kemper
KE
, et al
.
Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry
.
Hum Mol Genet
.
2018
;
27
(
20
):
3641
-
3649
.
57.
Yengo
L
,
Vedantam
S
,
Marouli
E
, et al
.
A saturated map of common genetic variants associated with human height
.
Nature
.
2022
;
610
(
7933
):
704
-
712
.
58.
Talens
S
,
Malfliet
JJMC
,
van Hal
PTW
,
Leebeek
FWG
,
Rijken
DC
.
Identification and characterization of alpha1 -antitrypsin in fibrin clots
.
J Thromb Haemost
.
2013
;
11
(
7
):
1319
-
1328
.
59.
Ercetin
E
,
Richtmann
S
,
Delgado
BM
, et al
.
Clinical significance of SERPINA1 gene and its encoded alpha1-antitrypsin protein in NSCLC
.
Cancers
.
2019
;
11
(
9
):
1306
.
60.
Strnad
P
,
McElvaney
NG
,
Lomas
DA
.
Alpha1-antitrypsin deficiency
.
N Engl J Med
.
2020
;
382
(
15
):
1443
-
1455
.
61.
Chen
M-H
,
Raffield
LM
,
Mousas
A
, et al
.
Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations
.
Cell
.
2020
;
182
(
5
):
1198
-
1213.e14
.
62.
Astle
WJ
,
Elding
H
,
Jiang
T
, et al
.
The allelic landscape of human blood cell trait variation and links to common complex disease
.
Cell
.
2016
;
167
(
5
):
1415
-
1429.e19
.
63.
Kichaev
G
,
Bhatia
G
,
Loh
P-R
, et al
.
Leveraging polygenic functional enrichment to improve GWAS power
.
Am J Hum Genet
.
2019
;
104
(
1
):
65
-
75
.
64.
Vuckovic
D
,
Bao
EL
,
Akbari
P
, et al
.
The polygenic and monogenic basis of blood traits and diseases
.
Cell
.
2020
;
182
(
5
):
1214
-
1231.e11
.
65.
Zhang
L
,
Prak
L
,
Rayon-Estrada
V
, et al
.
ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors
.
Nature
.
2013
;
499
(
7456
):
92
-
96
.
66.
Makita
S
,
Takatori
H
,
Nakajima
H
.
Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins
.
Front Immunol
.
2021
;
12
:
711633
.
67.
Lai
WS
,
Carballo
E
,
Strum
JR
,
Kennington
EA
,
Phillips
RS
,
Blackshear
PJ
.
Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA
.
Mol Cell Biol
.
1999
;
19
(
6
):
4311
-
4323
.
68.
Page
MJ
,
Bester
J
,
Pretorius
E
.
The inflammatory effects of TNF-α and complement component 3 on coagulation
.
Sci Rep
.
2018
;
8
(
1
):
1812
.
69.
Makita
S
,
Takatori
H
,
Iwata
A
, et al
.
RNA-binding protein ZFP36L2 downregulates helios expression and suppresses the function of regulatory T cells
.
Front Immunol
.
2020
;
11
:
1291
.
70.
Parra-Izquierdo
I
,
Lakshmanan
HHS
,
Melrose
AR
, et al
.
The toll-like receptor 2 ligand Pam2CSK4 activates platelet nuclear factor-∖kappaB and Bruton’s tyrosine kinase signaling to promote platelet-endothelial cell interactions
.
Front Immunol
.
2021
;
12
:
729951
.
71.
Fore
F
,
Indriputri
C
,
Mamutse
J
,
Nugraha
J
.
TLR10 and its unique anti-inflammatory properties and potential use as a target in therapeutics
.
Immune Netw
.
2020
;
20
(
3
):
e21
.
72.
Oosting
M
,
Cheng
S-C
,
Bolscher
JM
, et al
.
Human TLR10 is an anti-inflammatory pattern-recognition receptor
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
42
):
E4478
-
E4484
.
73.
Li
S
,
Wang
L
,
Sun
S
,
Wu
Q
.
Hepsin: a multifunctional transmembrane serine protease in pathobiology
.
FEBS J
.
2021
;
288
(
18
):
5252
-
5264
.
74.
Kazama
Y
,
Hamamoto
T
,
Foster
DC
,
Kisiel
W
.
Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation
.
J Biol Chem
.
1995
;
270
(
1
):
66
-
72
.
75.
Khandekar
G
,
Iyer
N
,
Jagadeeswaran
P
.
Prostasin and hepatocyte growth factor B in factor VIIa generation: serine protease knockdowns in zebrafish
.
Res Pract Thromb Haemost
.
2020
;
4
(
7
):
1150
-
1157
.
76.
Li
S
,
Peng
J
,
Wang
H
, et al
.
Hepsin enhances liver metabolism and inhibits adipocyte browning in mice
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
22
):
12359
-
12367
.
77.
Yu
IS
,
Chen
HJ
,
Lee
YS
, et al
.
Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability
.
Thromb Haemost
.
2000
;
84
(
5
):
865
-
870
.
78.
Wu
Q
,
Yu
D
,
Post
J
,
Halks-Miller
M
,
Sadler
JE
,
Morser
J
.
Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease
.
J Clin Invest
.
1998
;
101
(
2
):
321
-
326
.
79.
Maimaris
G
,
Christodoulou
A
,
Santama
N
,
Lederer
CW
.
Regulation of ER composition and extent, and putative action in protein networks by ER/NE protein TMEM147
.
Int J Mol Sci
.
2021
;
22
(
19
):
10231
.
80.
Hahn
J
,
Bressler
J
,
Domingo-Relloso
A
, et al
.
DNA methylation analysis identifies novel genetic loci associated with circulating fibrinogen levels in blood
.
J Thromb Haemost
.
2023
. 21(5):1135-1147.
81.
Casini
A
,
Undas
A
,
Palla
R
,
Thachil
J
,
de Moerloose
P
;
Subcommittee on Factor XIII and Fibrinogen
.
Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH
.
J Thromb Haemost
.
2018
;
16
(
9
):
1887
-
1890
.
82.
Korte
W
,
Poon
M-C
,
Iorio
A
,
Makris
M
.
Thrombosis in inherited fibrinogen disorders
.
Transfus Med Hemother
.
2017
;
44
(
2
):
70
-
76
.
83.
Uitte de Willige
S
,
Standeven
KF
,
Philippou
H
,
Ariëns
RAS
.
The pleiotropic role of the fibrinogen gamma’ chain in hemostasis
.
Blood
.
2009
;
114
(
19
):
3994
-
4001
.
84.
Vedder
D
,
Gerritsen
M
,
Meijers
JCM
,
Nurmohamed
MT
.
Coagulation in gout: is there a link with disease activity?
.
Clin Rheumatol
.
2022
;
41
(
6
):
1809
-
1815
.
85.
Wu
Y
,
Chu
C
,
Song
P
,
Yang
Y
,
Lin
C
,
Xu
Q
.
Plasma D-dimer is a promising indicator for the treatment of acute gouty attack
.
Ann Clin Lab Sci
.
2018
;
48
(
4
):
435
-
439
.

Author notes

J.E.H., J.N., and J.H. are joint first authors.

P.S.d.V., M.S.-L., A.C.M. and N.L.S. are joint last authors.

Whole-genome sequencing and selected phenotype data for TOPMed studies are available through dbGaP and the National Heart, Lung, and Blood Institute BioData Catalyst cloud platform (see https://topmed.nhlbi.nih.gov/topmed-data-access-scientific-community for detailed instructions). dbGaP accession numbers for studies specifically contributing to this study can also be found in the supplemental Data (“TOPMed Omics Support Table”). Full genome-wide association study summary statistics for this analysis are available through the “CHARGE Consortium Summary Results from Genomics Studies” dbGaP page (accession phs000930) or by contacting the corresponding author, Jennifer E. Huffman (jennifer.huffman2@va.gov).

The data used for the analyses described in this article were obtained from the Gentotype-Tissue Expression Portal on 29 October 2022.

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Sign in via your Institution