• Less-deformable sickle red cells marginate toward blood vessel walls, leading to altered local wall shear stress and endothelial dysfunction.

  • Pathological biophysical alterations in sickle RBCs cause endothelial dysfunction independently from vaso-occlusion and adhesion.

Abstract

Sickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability, leading to microvascular obstruction and inflammation. Although the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs directly cause endothelial dysfunction via mechanotransduction, during which endothelial cells sense and pathophysiologically respond to aberrant physical forces independently of microvascular obstruction, adhesion, or hemolysis. We demonstrate that perfusion of sickle RBCs or pharmacologically-dehydrated healthy RBCs into small venule-sized “endothelialized” microfluidics leads to pathologic physical interactions with endothelial cells that directly induce inflammatory pathways. Using a combination of computational simulations and large venule-sized endothelialized microfluidics, we observed that perfusion of heterogeneous sickle RBC subpopulations with varying deformability, as well as suspensions of dehydrated normal RBCs admixed with normal RBCs, leads to aberrant margination of the less-deformable RBC subpopulations toward the vessel walls, causing localized, increased shear stress. Increased wall stress is dependent on the degree of subpopulation heterogeneity and oxygen tension and leads to inflammatory endothelial gene expression via mechanotransductive pathways. Our multifaceted approach demonstrates that the presence of sickle RBCs with reduced deformability leads directly to pathological physical (ie, direct collisions and/or compressive forces) and shear-mediated interactions with endothelial cells and induces an inflammatory response, thereby elucidating the ubiquity of vascular dysfunction in SCD.

1.
Pauling
L
,
Itano
HA
,
Singer
SJ
,
Wells
IC
.
Sickle cell anemia a molecular disease
.
Science
.
1949
;
110
(
2865
):
543
-
548
.
2.
Rabai
M
,
Detterich
JA
,
Wenby
RB
, et al
.
Deformability analysis of sickle blood using ektacytometry
.
Biorheology
.
2014
;
51
(
2-3
):
159
-
170
.
3.
Tripette
J
,
Alexy
T
,
Hardy-Dessources
M-D
, et al
.
Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease
.
Haematologica
.
2009
;
94
(
8
):
1060
-
1065
.
4.
Alapan
Y
,
Matsuyama
Y
,
Little
JA
,
Gurkan
UA
.
Dynamic deformability of sickle red blood cells in microphysiological flow
.
Technology
.
2016
;
4
(
2
):
71
-
79
.
5.
Bunn
HF
,
Nathan
DG
,
Dover
GJ
, et al
.
Pulmonary hypertension and nitric oxide depletion in sickle cell disease
.
Blood
.
2010
;
116
(
5
):
687
-
692
.
6.
Kato
GJ
,
Hebbel
RP
,
Steinberg
MH
,
Gladwin
MT
.
Vasculopathy in sickle cell disease: biology, pathophysiology, genetics, translational medicine, and new research directions
.
Am J Hematol
.
2009
;
84
(
9
):
618
-
625
.
7.
Morris
CR
.
Mechanisms of vasculopathy in sickle cell disease and thalassemia
.
Hematology Am Soc Hematol Educ Program
.
2008
;
2008
(
1
):
177
-
185
.
8.
Aessopos
A
,
Farmakis
D
,
Tsironi
M
, et al
.
Endothelial function and arterial stiffness in sickle-thalassemia patients
.
Atherosclerosis
.
2007
;
191
(
2
):
427
-
432
.
9.
Kato
GJ
,
Gladwin
MT
.
Evolution of novel small-molecule therapeutics targeting sickle cell vasculopathy
.
JAMA
.
2008
;
300
(
22
):
2638
-
2646
.
10.
Yuditskaya
S
,
Tumblin
A
,
Hoehn
GT
, et al
.
Proteomic identification of altered apolipoprotein patterns in pulmonary hypertension and vasculopathy of sickle cell disease
.
Blood
.
2009
;
113
(
5
):
1122
-
1128
.
11.
Abe
J
,
Berk
BC
.
Novel mechanisms of endothelial mechanotransduction
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
11
):
2378
-
2386
.
12.
Chien
S
.
Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell
.
Am J Physiol Heart Circ Physiol
.
2007
;
292
(
3
):
H1209
-
H1224
.
13.
Harrison
DG
,
Widder
J
,
Grumbach
I
,
Chen
W
,
Weber
M
,
Searles
C
.
Endothelial mechanotransduction, nitric oxide and vascular inflammation
.
J Intern Med
.
2006
;
259
(
4
):
351
-
363
.
14.
Chatterjee
S
,
Fisher
AB
.
Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow
.
Antioxid Redox Signal
.
2014
;
20
(
6
):
899
-
913
.
15.
Schulz
E
,
Gori
T
,
Munzel
T
.
Oxidative stress and endothelial dysfunction in hypertension
.
Hypertens Res
.
2011
;
34
(
6
):
665
-
673
.
16.
Fahraeus
R
,
Lindqvist
T
.
The viscosity of the blood in narrow capillary tubes
.
Am J Physiol
.
1931
;
96
(
3
):
562
-
568
.
17.
Goldsmith
HL
,
Skalak
R
.
Hemodynamics
.
Annu Rev Fluid Mech
.
1975
;
7
(
1
):
213
-
247
.
18.
Asakura
T
,
Mattiello
JA
,
Obata
K
, et al
.
Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
26
):
12589
-
12593
.
19.
Clark
MR
,
Mohandas
N
,
Shohet
SB
.
Deformability of oxygenated irreversibly sickled cells
.
J Clin Invest
.
1980
;
65
(
1
):
189
-
196
.
20.
Nash
GB
,
Johnson
CS
,
Meiselman
HJ
.
Rheologic impairment of sickle RBCs induced by repetitive cycles of deoxygenation-reoxygenation
.
Blood
.
1988
;
72
(
2
):
539
-
545
.
21.
Joiner
CH
,
Lauf
PK
.
Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes
.
J Physiol
.
1978
;
283
:
177
-
196
.
22.
Hoelzle
DJ
,
Varghese
BA
,
Chan
CK
,
Rowat
AC
.
A microfluidic technique to probe cell deformability
.
J Vis Exp
.
2014
;
91
:
e51474
.
23.
Sinha
K
,
Graham
MD
.
Dynamics of a single red blood cell in simple shear flow
.
Phys Rev E
.
2015
;
92
(
4
):
042710
.
24.
Balogh
P
,
Bagchi
P
.
A computational approach to modeling cellular scale blood flow in complex geometry
.
J Comput Phys
.
2017
;
334
:
280
-
307
.
25.
Mittal
R
,
Dong
H
,
Bozkurttas
M
,
Najjar
FM
,
Vargas
A
,
von Loebbecke
A
.
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
.
J Comput Phys
.
2008
;
227
(
10
):
4825
-
4852
.
26.
Valdez
JM
,
Datta
YH
,
Higgins
JM
,
Wood
DK
.
A microfluidic platform for simultaneous quantification of oxygen-dependent viscosity and shear thinning in sickle cell blood
.
APL Bioeng
.
2019
;
3
(
4
):
046102
.
27.
Kumar
A
,
Graham
MD
.
Mechanism of margination in confined flows of blood and other multicomponent suspensions
.
Phys Rev Lett
.
2012
;
109
(
10
):
108102
.
28.
Cheng
X
,
Caruso
C
,
Lam
WA
,
Graham
MD
.
Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders
.
Sci Adv
.
2023
;
9
(
48
):
eadj6423
.
29.
Kondrychyn
I
,
Kelly
DJ
,
Carretero
NT
, et al
.
Marcksl1 modulates endothelial cell mechanoresponse to haemodynamic forces to control blood vessel shape and size
.
Nat Commun
.
2020
;
11
(
1
):
5476
.
30.
Zhang
H
,
Zhou
S
,
Sun
M
, et al
.
Ferroptosis of endothelial cells in vascular diseases
.
Nutrients
.
2022
;
14
(
21
):
4506
.
31.
Szafraniec
HM
,
Valdez
JM
,
Iffrig
E
, et al
.
Feature tracking microfluidic analysis reveals differential roles of viscosity and friction in sickle cell blood
.
Lab Chip
.
2022
;
22
(
8
):
1565
-
1575
.
32.
Suzuki
T
,
Aizawa
K
,
Matsumura
T
,
Nagai
R
.
Vascular implications of the Kruppel-like family of transcription factors
.
Arterioscl Throm Vas
.
2005
;
25
(
6
):
1135
-
1141
.
33.
Hamik
A
,
Lin
Z
,
Kumar
A
, et al
.
Kruppel-like factor 4 regulates endothelial inflammation
.
J Biol Chem
.
2007
;
282
(
18
):
13769
-
13779
.
34.
Atkins
GB
,
Jain
MK
.
Role of Kruppel-like transcription factors in endothelial biology
.
Circ Res
.
2007
;
100
(
12
):
1686
-
1695
.
35.
Chien
S
,
Chiu
JJ
,
Li
YS
.
Focal adhesion kinase phosphorylation in flow-activation of endothelial NF-jB. Focus on ‘focal adhesion kinase modulates activation of NF-jB by flow in endothelial cells
.
Am J Physiol Cell Physiol
.
2009
;
297
(
4
):
C800
-
C801
.
36.
He
M
,
Martin
M
,
Marin
T
,
Chen
Z
,
Gongol
B
.
Endothelial mechanobiology
.
APL Bioeng
.
2020
;
4
(
1
):
010904
.
You do not currently have access to this content.
Sign in via your Institution