Abstract

Over the past 2 decades, there has been a significant increase in the utilization of long-term mechanical circulatory support (MCS) for the treatment of cardiac failure. Left ventricular assist devices (LVADs) and total artificial hearts (TAHs) have been developed in parallel to serve as bridge-to-transplant and destination therapy solutions. Despite the distinct hemodynamic characteristics introduced by LVADs and TAHs, a comparative evaluation of these devices regarding potential complications in supported patients, has not been undertaken. Such a study could provide valuable insights into the complications associated with these devices. Although MCS has shown substantial clinical benefits, significant complications related to hemocompatibility persist, including thrombosis, recurrent bleeding, and cerebrovascular accidents. This review focuses on the current understanding of hemostasis, specifically thrombotic and bleeding complications, and explores the influence of different shear stress regimens in long-term MCS. Furthermore, the role of endothelial cells in protecting against hemocompatibility-related complications of MCS is discussed. We also compared the diverse mechanisms contributing to the occurrence of hemocompatibility-related complications in currently used LVADs and TAHs. By applying the existing knowledge, we present, for the first time, a comprehensive comparison between long-term MCS options.

1.
Chatterjee
A
,
Feldmann
C
,
Hanke
JS
, et al
.
The momentum of HeartMate 3: a novel active magnetically levitated centrifugal left ventricular assist device (LVAD)
.
J Thorac Dis
.
2018
;
10
(
suppl 15
):
S1790
-
S1793
.
2.
Shah
P
,
Yuzefpolskaya
M
,
Hickey
GW
, et al
.
Twelfth Interagency Registry for Mechanically Assisted Circulatory Support report: readmissions after left ventricular assist device
.
Ann Thorac Surg
.
2022
;
113
(
3
):
722
-
737
.
3.
Cooley
DA
,
Liotta
D
,
Hallman
GL
,
Bloodwell
RD
,
Leachman
RD
,
Milam
JD
.
Orthotopic cardiac prosthesis for two-staged cardiac replacement
.
Am J Cardiol
.
1969
;
24
(
5
):
723
-
730
.
4.
Henn
MC
,
Mokadam
NA
.
Total artificial heart as a bridge to transplantation
.
Curr Opin Organ Transplant
.
2022
;
27
(
3
):
222
-
228
.
5.
David
C-H
,
Lacoste
P
,
Nanjaiah
P
, et al
.
A heart transplant after total artificial heart support: initial and long-term results
.
Eur J Cardio Thorac Surg
.
2020
;
58
(
6
):
1175
-
1181
.
6.
Copeland
JG
,
Copeland
H
,
Gustafson
M
, et al
.
Experience with more than 100 total artificial heart implants
.
J Thorac Cardiovasc Surg
.
2012
;
143
(
3
):
727
-
734
.
7.
Richez
U
,
De Castilla
H
,
Guerin
CL
, et al
.
Hemocompatibility and safety of the Carmat Total Artifical Heart hybrid membrane
.
Heliyon
.
2019
;
5
(
12
):
e02914
.
8.
Bachmann
C
,
Hugo
G
,
Rosenberg
G
,
Deutsch
S
,
Fontaine
A
,
Tarbell
JM
.
Fluid dynamics of a pediatric ventricular assist device
.
Artif Organs
.
2000
;
24
(
5
):
362
-
372
.
9.
Cooper
BT
,
Roszelle
BN
,
Long
TC
,
Deutsch
S
,
Manning
KB
.
The influence of operational protocol on the fluid dynamics in the 12 cc Penn state pulsatile pediatric ventricular assist device: the effect of end-diastolic delay
.
Artif Organs
.
2010
;
34
(
4
):
E122
-
133
.
10.
Medvitz
RB
,
Reddy
V
,
Deutsch
S
,
Manning
KB
,
Paterson
EG
.
Validation of a CFD methodology for positive displacement LVAD analysis using PIV data
.
J Biomech Eng
.
2009
;
131
(
11
):
111009
.
11.
Yap
CH
,
Saikrishnan
N
,
Yoganathan
AP
.
Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet
.
Biomech Model Mechanobiol
.
2012
;
11
(
1-2
):
231
-
244
.
12.
Kroll
MH
,
Hellums
JD
,
McIntire
LV
,
Schafer
AI
,
Moake
JL
.
Platelets and shear stress
.
Blood
.
1996
;
88
(
5
):
1525
-
1541
.
13.
Panteleev
MA
,
Korin
N
,
Reesink
KD
, et al
.
Wall shear rates in human and mouse arteries: standardization of hemodynamics for in vitro blood flow assays: communication from the ISTH SSC Subcommittee on biorheology
.
J Thromb Haemost
.
2021
;
19
(
2
):
588
-
595
.
14.
Song
X
,
Throckmorton
AL
,
Untaroiu
A
, et al
.
Axial flow blood pumps
.
ASAIO J
.
2003
;
49
(
4
):
355
-
364
.
15.
Thamsen
B
,
Blümel
B
,
Schaller
J
, et al
.
Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps
.
Artif Organs
.
2015
;
39
(
8
):
651
-
659
.
16.
Bourque
K
,
Cotter
C
,
Dague
C
, et al
.
Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility
.
ASAIO J
.
2016
;
62
(
4
):
375
-
383
.
17.
Nascimbene
A
,
Neelamegham
S
,
Frazier
OH
,
Moake
JL
,
Dong
J-F
.
Acquired von Willebrand syndrome associated with left ventricular assist device
.
Blood
.
2016
;
127
(
25
):
3133
-
3141
.
18.
Wu
W-T
,
Yang
F
,
Wu
J
,
Aubry
N
,
Massoudi
M
,
Antaki
JF
.
High fidelity computational simulation of thrombus formation in Thoratec HeartMate II continuous flow ventricular assist device
.
Sci Rep
.
2016
;
6
:
38025
.
19.
Fraser
KH
,
Taskin
ME
,
Griffith
BP
,
Wu
ZJ
.
The use of computational fluid dynamics in the development of ventricular assist devices
.
Med Eng Phys
.
2011
;
33
(
3
):
263
-
280
.
20.
Zhang
J
,
Chen
Z
,
Griffith
BP
,
Wu
ZJ
.
Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps
.
Int J Artif Organs
.
2020
;
43
(
10
):
653
-
662
.
21.
Wiegmann
L
,
Thamsen
B
,
de Zélicourt
D
, et al
.
Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation
.
Artif Organs
.
2019
;
43
(
4
):
363
-
376
.
22.
Boraschi
A
,
Bozzi
S
,
Thamsen
B
, et al
.
Thrombotic risk of rotor speed modulation regimes of contemporary centrifugal continuous-flow left ventricular assist devices
.
ASAIO J
.
2021
;
67
(
7
):
737
-
745
.
23.
Wiegmann
L
,
Boës
S
,
de Zélicourt
D
, et al
.
Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility
.
Ann Biomed Eng
.
2018
;
46
(
3
):
417
-
428
.
24.
Mizunuma
H
,
Nakajima
R
.
Experimental study on shear stress distributions in a centrifugal blood pump
.
Artif Organs
.
2007
;
31
(
7
):
550
-
559
.
25.
Bark
DL
,
Ku
DN
.
Wall shear over high degree stenoses pertinent to atherothrombosis
.
J Biomech
.
2010
;
43
(
15
):
2970
-
2977
.
26.
Luraghi
G
,
Wu
W
,
De Castilla
H
, et al
.
Numerical approach to study the behavior of an artificial ventricle: fluid-structure interaction followed by fluid dynamics with moving boundaries
.
Artif Organs
.
2018
;
42
(
10
):
E315
-
E324
.
27.
Bizouarn
P
,
Roussel
J-C
,
Trochu
J-N
,
Perlès
JC
,
Latrémouille
C
.
Effects of pre-load variations on hemodynamic parameters with a pulsatile autoregulated artificial heart during the early post-operative period
.
J Heart Lung Transplant
.
2018
;
37
(
1
):
161
-
163
.
28.
Netuka
I
,
Pya
Y
,
Poitier
B
, et al
.
First clinical experience with the pressure sensor-based autoregulation of blood flow in an artificial heart
.
ASAIO J
.
2021
;
67
(
10
):
1100
-
1108
.
29.
Kirklin
JK
,
Naftel
DC
,
Pagani
FD
, et al
.
Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation?
.
J Thorac Cardiovasc Surg
.
2012
;
144
(
3
):
584
-
603
. discussion 597-598.
30.
Starling
RC
,
Naka
Y
,
Boyle
AJ
, et al
.
Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support)
.
J Am Coll Cardiol
.
2011
;
57
(
19
):
1890
-
1898
.
31.
Slaughter
MS
,
Rogers
JG
,
Milano
CA
, et al
.
Advanced heart failure treated with continuous-flow left ventricular assist device
.
N Engl J Med
.
2009
;
361
(
23
):
2241
-
2251
.
32.
Miller
LW
,
Pagani
FD
,
Russell
SD
, et al
.
Use of a continuous-flow device in patients awaiting heart transplantation
.
N Engl J Med
.
2007
;
357
(
9
):
885
-
896
.
33.
Park
SJ
,
Milano
CA
,
Tatooles
AJ
, et al
.
Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy
.
Circ Heart Fail
.
2012
;
5
(
2
):
241
-
248
.
34.
Starling
RC
,
Moazami
N
,
Silvestry
SC
, et al
.
Unexpected abrupt increase in left ventricular assist device thrombosis
.
N Engl J Med
.
2014
;
370
(
1
):
33
-
40
.
35.
Kirklin
JK
,
Naftel
DC
,
Kormos
RL
, et al
.
Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device
.
J Heart Lung Transplant
.
2014
;
33
(
1
):
12
-
22
.
36.
Grinstein
J
,
Belkin
MN
,
Kalantari
S
,
Bourque
K
,
Salerno
C
,
Pinney
S
.
Adverse hemodynamic consequences of continuous left ventricular mechanical support: JACC review topic of the week
.
J Am Coll Cardiol
.
2023
;
82
(
1
):
70
-
81
.
37.
Mehra
MR
,
Goldstein
DJ
,
Uriel
N
, et al
.
Two-year outcomes with a magnetically levitated cardiac pump in heart failure
.
N Engl J Med
.
2018
;
378
(
15
):
1386
-
1395
.
38.
Dang
G
,
Epperla
N
,
Muppidi
V
, et al
.
Medical management of pump-related thrombosis in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis
.
ASAIO J
.
2017
;
63
(
4
):
373
-
385
.
39.
Seese
L
,
Hickey
G
,
Keebler
M
,
Thoma
F
,
Kilic
A
.
Limited efficacy of thrombolytics for pump thrombosis in durable left ventricular assist devices
.
Ann Thorac Surg
.
2020
;
110
(
6
):
2047
-
2054
.
40.
Baumann Kreuziger
L
,
Slaughter
MS
,
Sundareswaran
K
,
Mast
AE
.
Clinical relevance of histopathologic analysis of HeartMate II thrombi
.
ASAIO J
.
2018
;
64
(
6
):
754
-
759
.
41.
Da
Q
,
Teruya
M
,
Guchhait
P
,
Teruya
J
,
Olson
JS
,
Cruz
MA
.
Free hemoglobin increases von Willebrand factor-mediated platelet adhesion in vitro: implications for circulatory devices
.
Blood
.
2015
;
126
(
20
):
2338
-
2341
.
42.
Roberts
N
,
Chandrasekaran
U
,
Das
S
,
Qi
Z
,
Corbett
S
.
Hemolysis associated with Impella heart pump positioning: in vitro hemolysis testing and computational fluid dynamics modeling
.
Int J Artif Organs
.
2020
:
391398820909843
.
43.
Arora
D
,
Behr
M
,
Pasquali
M
.
Hemolysis estimation in a centrifugal blood pump using a tensor-based measure
.
Artif Organs
.
2006
;
30
(
7
):
539
-
547
.
44.
Arora
D
,
Behr
M
,
Pasquali
M
.
A tensor-based measure for estimating blood damage
.
Artif Organs
.
2004
;
28
(
11
):
1002
-
1015
.
45.
Hellums
JD
.
1993 Whitaker Lecture: biorheology in thrombosis research
.
Ann Biomed Eng
.
1994
;
22
(
5
):
445
-
455
.
46.
Carpentier
A
,
Latrémouille
C
,
Cholley
B
, et al
.
First clinical use of a bioprosthetic total artificial heart: report of two cases
.
Lancet
.
2015
;
386
(
10003
):
1556
-
1563
.
47.
Poitier
B
,
Chocron
R
,
Peronino
C
, et al
.
Bioprosthetic total artificial heart in autoregulated mode is biologically hemocompatible: insights for multimers of von Willebrand factor
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
4
):
470
-
480
.
48.
Kaya
E
,
Kocabas
U
,
Simsek
E
, et al
.
Effects of continuous-flow left ventricular assist device therapy on peripheral vascular function
.
ASAIO J
.
2022
;
68
(
2
):
214
-
219
.
49.
Cortese
F
,
Ciccone
MM
,
Gesualdo
M
, et al
.
Continuous flow left ventricular assist devices do not worsen endothelial function in subjects with chronic heart failure: a pilot study
.
ESC Heart Fail
.
2021
;
8
(
5
):
3587
-
3593
.
50.
Watanabe
A
,
Amiya
E
,
Hatano
M
, et al
.
Significant impact of left ventricular assist device models on the value of flow-mediated dilation: effects of LVAD on endothelial function
.
Heart Vessels
.
2020
;
35
(
2
):
207
-
213
.
51.
Sansone
R
,
Stanske
B
,
Keymel
S
, et al
.
Macrovascular and microvascular function after implantation of left ventricular assist devices in end-stage heart failure: role of microparticles
.
J Heart Lung Transplant
.
2015
;
34
(
7
):
921
-
932
.
52.
Ivak
P
,
Netuka
I
,
Tucanova
Z
, et al
.
The effect of artificial pulsatility on the peripheral vasculature in patients with continuous-flow ventricular assist devices
.
Can J Cardiol
.
2021
;
37
(
10
):
1578
-
1585
.
53.
Dlouha
D
,
Ivak
P
,
Netuka
I
, et al
.
The effect of long-term left ventricular assist device support on flow-sensitive plasma microRNA levels
.
Int J Cardiol
.
2021
;
339
:
138
-
143
.
54.
Sun
H-X
,
Zeng
D-Y
,
Li
R-T
, et al
.
Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase
.
Hypertension
.
2012
;
60
(
6
):
1407
-
1414
.
55.
Harris
TA
,
Yamakuchi
M
,
Ferlito
M
,
Mendell
JT
,
Lowenstein
CJ
.
MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
5
):
1516
-
1521
.
56.
Cerutti
C
,
Edwards
LJ
,
de Vries
HE
,
Sharrack
B
,
Male
DK
,
Romero
IA
.
MiR-126 and miR-126∗ regulate shear-resistant firm leukocyte adhesion to human brain endothelium
.
Sci Rep
.
2017
;
7
:
45284
.
57.
Afonyushkin
T
,
Oskolkova
OV
,
Bochkov
VN
.
Permissive role of miR-663 in induction of VEGF and activation of the ATF4 branch of unfolded protein response in endothelial cells by oxidized phospholipids
.
Atherosclerosis
.
2012
;
225
(
1
):
50
-
55
.
58.
Sun
J
,
Ge
Y
,
Chao
T
,
Bai
R
,
Wang
C
.
The role of miRNA in the regulation of angiogenesis in ischemic heart disease
.
Curr Probl Cardiol
.
2023
;
48
(
6
):
101637
.
59.
Hoefer
IE
,
den Adel
B
,
Daemen
MJAP
.
Biomechanical factors as triggers of vascular growth
.
Cardiovasc Res
.
2013
;
99
(
2
):
276
-
283
.
60.
Adams
JA
,
Uryash
A
,
Lopez
JR
.
Non-invasive pulsatile shear stress modifies endothelial activation; a narrative review
.
Biomedicines
.
2022
;
10
(
12
):
3050
.
61.
Smadja
DM
,
Chocron
R
,
Rossi
E
, et al
.
Autoregulation of pulsatile bioprosthetic total artificial heart is involved in endothelial homeostasis preservation
.
Thromb Haemost
.
2020
;
120
(
9
):
1313
-
1322
.
62.
Vincent
F
,
Rauch
A
,
Loobuyck
V
, et al
.
Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support
.
J Am Coll Cardiol
.
2018
;
71
(
19
):
2106
-
2118
.
63.
Latrémouille
C
,
Duveau
D
,
Cholley
B
, et al
.
Animal studies with the Carmat bioprosthetic total artificial heart
.
Eur J Cardio Thorac Surg
.
2015
;
47
(
5
):
e172
-
e178
. discussion e178-179.
64.
Smadja
DM
,
Susen
S
,
Rauch
A
, et al
.
The Carmat bioprosthetic total artificial heart is associated with early hemostatic recovery and no acquired von Willebrand syndrome in calves
.
J Cardiothorac Vasc Anesth
.
2017
;
31
(
5
):
1595
-
1602
.
65.
Latrémouille
C
,
Carpentier
A
,
Leprince
P
, et al
.
A bioprosthetic total artificial heart for end-stage heart failure: results from a pilot study
.
J Heart Lung Transplant
.
2018
;
37
(
1
):
33
-
37
.
66.
Smadja
DM
,
Saubaméa
B
,
Susen
S
, et al
.
Bioprosthetic total artificial heart induces a profile of acquired hemocompatibility with membranes recellularization
.
J Am Coll Cardiol
.
2017
;
70
(
3
):
404
-
406
.
67.
Guerin
CL
,
Guyonnet
L
,
Goudot
G
, et al
.
Multidimensional proteomic approach of endothelial progenitors demonstrate expression of KDR restricted to CD19 cells
.
Stem Cell Rev Rep
.
2021
;
17
(
2
):
639
-
651
.
68.
Guyonnet
L
,
Detriché
G
,
Gendron
N
, et al
.
Elevated circulating stem cells level is observed one month after implantation of Carmat bioprosthetic total artificial heart
.
Stem Cell Rev Rep
.
2021
;
17
(
6
):
2332
-
2337
.
69.
Schaub
RD
,
Kameneva
MV
,
Borovetz
HS
,
Wagner
WR
.
Assessing acute platelet adhesion on opaque metallic and polymeric biomaterials with fiber optic microscopy
.
J Biomed Mater Res
.
2000
;
49
(
4
):
460
-
468
.
70.
Maas
C
,
Renné
T
.
Regulatory mechanisms of the plasma contact system
.
Thromb Res
.
2012
;
129
(
Suppl 2
):
S73
-
76
.
71.
Himmelreich
G
,
Ullmann
H
,
Riess
H
, et al
.
Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device
.
ASAIO J
.
1995
;
41
(
3
):
M790
-
794
.
72.
Ankersmit
HJ
,
Tugulea
S
,
Spanier
T
, et al
.
Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device
.
Lancet
.
1999
;
354
(
9178
):
550
-
555
.
73.
Deng
MC
,
Erren
M
,
Tjan
TD
, et al
.
Left ventricular assist system support is associated with persistent inflammation and temporary immunosuppression
.
Thorac Cardiovasc Surg
.
1999
;
47
(
suppl 2
):
326
-
331
.
74.
Grosman-Rimon
L
,
McDonald
MA
,
Jacobs
I
, et al
.
Markers of inflammation in recipients of continuous-flow left ventricular assist devices
.
ASAIO J
.
2014
;
60
(
6
):
657
-
663
.
75.
Masai
T
,
Sawa
Y
,
Ohtake
S
, et al
.
Hepatic dysfunction after left ventricular mechanical assist in patients with end-stage heart failure: role of inflammatory response and hepatic microcirculation
.
Ann Thorac Surg
.
2002
;
73
(
2
):
549
-
555
.
76.
Caruso
R
,
Trunfio
S
,
Milazzo
F
, et al
.
Early expression of pro- and anti-inflammatory cytokines in left ventricular assist device recipients with multiple organ failure syndrome
.
ASAIO J
.
2010
;
56
(
4
):
313
-
318
.
77.
Caruso
R
,
Caselli
C
,
Cozzi
L
, et al
.
Myocardial interleukin-6 in the setting of left ventricular mechanical assistance: relation with outcome and C-reactive protein
.
Clin Chem Lab Med
.
2015
;
53
(
9
):
1359
-
1366
.
78.
Caruso
R
,
Verde
A
,
Campolo
J
, et al
.
Severity of oxidative stress and inflammatory activation in end-stage heart failure patients are unaltered after 1 month of left ventricular mechanical assistance
.
Cytokine
.
2012
;
59
(
1
):
138
-
144
.
79.
Tabit
CE
,
Coplan
MJ
,
Chen
P
,
Jeevanandam
V
,
Uriel
N
,
Liao
JK
.
Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices
.
J Heart Lung Transplant
.
2018
;
37
(
1
):
107
-
115
.
80.
Woolley
JR
,
Teuteberg
JJ
,
Bermudez
CA
, et al
.
Temporal leukocyte numbers and granulocyte activation in pulsatile and rotary ventricular assist device patients
.
Artif Organs
.
2014
;
38
(
6
):
447
-
455
.
81.
Pronschinske
KB
,
Qiu
S
,
Wu
C
, et al
.
Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement
.
J Heart Lung Transplant
.
2014
;
33
(
12
):
1215
-
1222
.
82.
Grosman-Rimon
L
,
Hui
SG
,
Freedman
D
,
Elbaz-Greener
G
,
Cherney
D
,
Rao
V
.
Biomarkers of inflammation, fibrosis, and acute kidney injury in patients with heart failure with and without left ventricular assist device implantation
.
Cardiorenal Med
.
2019
;
9
(
2
):
108
-
116
.
83.
Carminita
E
,
Crescence
L
,
Panicot-Dubois
L
,
Dubois
C
.
Role of neutrophils and NETs in animal models of thrombosis
.
Int J Mol Sci
.
2022
;
23
(
3
):
1411
.
84.
Granja
T
,
Magunia
H
,
Schüssel
P
, et al
.
Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction
.
Platelets
.
2022
;
33
(
1
):
132
-
140
.
85.
Hennessy-Strahs
S
,
Bermudez
CA
,
Acker
MA
,
Bartoli
CR
.
Toward a standard practice to quantify von Willebrand factor degradation during left ventricular assist device support
.
Ann Thorac Surg
.
2021
;
112
(
4
):
1257
-
1264
.
86.
Bartoli
CR
.
Pathologic von Willebrand factor degradation is a major contributor to left ventricular assist device-associated bleeding: pathophysiology and evolving clinical management
.
Ann Cardiothorac Surg
.
2021
;
10
(
3
):
389
-
392
.
87.
Crow
S
,
Milano
C
,
Joyce
L
, et al
.
Comparative analysis of von Willebrand factor profiles in pulsatile and continuous left ventricular assist device recipients
.
ASAIO J
.
2010
;
56
(
5
):
441
-
445
.
88.
Lahpor
J
,
Khaghani
A
,
Hetzer
R
, et al
.
European results with a continuous-flow ventricular assist device for advanced heart-failure patients
.
Eur J Cardio Thorac Surg
.
2010
;
37
(
2
):
357
-
361
.
89.
Wieselthaler
GM
,
O Driscoll
G
,
Jansz
P
,
Khaghani
A
,
Strueber
M
;
HVAD Clinical Investigators
.
Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial
.
J Heart Lung Transplant
.
2010
;
29
(
11
):
1218
-
1225
.
90.
Meyer
AL
,
Malehsa
D
,
Budde
U
,
Bara
C
,
Haverich
A
,
Strueber
M
.
Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device
.
JACC Heart Fail
.
2014
;
2
(
2
):
141
-
145
.
91.
Mehra
MR
,
Goldstein
DJ
,
Cleveland
JC
, et al
.
Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial
.
JAMA
.
2022
;
328
(
12
):
1233
-
1242
.
92.
Kataria
R
,
Jorde
UP
.
Gastrointestinal bleeding during continuous-flow left ventricular assist device support: state of the field
.
Cardiol Rev
.
2019
;
27
(
1
):
8
-
13
.
93.
Gill
JC
,
Endres-Brooks
J
,
Bauer
PJ
,
Marks
WJ
,
Montgomery
RR
.
The effect of ABO blood group on the diagnosis of von Willebrand disease
.
Blood
.
1987
;
69
(
6
):
1691
-
1695
.
94.
Tscharre
M
,
Wittmann
F
,
Kitzmantl
D
, et al
.
Impact of ABO blood group on thromboembolic and bleeding complications in patients with left ventricular assist devices
.
Thromb Haemost
.
2023
;
123
(
3
):
336
-
346
.
95.
Netuka
I
,
Ivák
P
,
Tučanová
Z
, et al
.
Evaluation of low-intensity anti-coagulation with a fully magnetically levitated centrifugal-flow circulatory pump-the MAGENTUM 1 study
.
J Heart Lung Transplant
.
2018
;
37
(
5
):
579
-
586
.
96.
Mehra
MR
,
Crandall
DL
,
Gustafsson
F
, et al
.
Aspirin and left ventricular assist devices: rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial
.
Eur J Heart Fail
.
2021
;
23
(
7
):
1226
-
1237
.
97.
Bartoli
CR
,
Kang
J
,
Restle
DJ
, et al
.
Inhibition of ADAMTS-13 by doxycycline reduces von Willebrand factor degradation during supraphysiological shear stress: therapeutic implications for left ventricular assist device-associated bleeding
.
JACC Heart Fail
.
2015
;
3
(
11
):
860
-
869
.
98.
Imamura
T
,
Nguyen
A
,
Rodgers
D
, et al
.
Omega-3 therapy is associated with reduced gastrointestinal bleeding in patients with continuous-flow left ventricular assist device
.
Circ Heart Fail
.
2018
;
11
(
10
):
e005082
.
99.
Asleh
R
,
Albitar
HAH
,
Schettle
SD
, et al
.
Intravenous bevacizumab as a novel treatment for refractory left ventricular assist device-related gastrointestinal bleeding
.
J Heart Lung Transplant
.
2020
;
39
(
5
):
492
-
495
.
100.
Geisen
U
,
Heilmann
C
,
Beyersdorf
F
, et al
.
Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease
.
Eur J Cardio Thorac Surg
.
2008
;
33
(
4
):
679
-
684
.
101.
Vincentelli
A
,
Susen
S
,
Le Tourneau
T
, et al
.
Acquired von Willebrand syndrome in aortic stenosis
.
N Engl J Med
.
2003
;
349
(
4
):
343
-
349
.
102.
Van Belle
E
,
Rauch
A
,
Vincentelli
A
, et al
.
Von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions
.
Circ Res
.
2015
;
116
(
7
):
1193
-
1201
.
103.
Goda
M
,
Jacobs
S
,
Rega
F
, et al
.
Time course of acquired von Willebrand disease associated with two types of continuous-flow left ventricular assist devices: HeartMate II and CircuLite Synergy Pocket Micro-pump
.
J Heart Lung Transplant
.
2013
;
32
(
5
):
539
-
545
.
104.
Tsai
HM
,
Sussman
II
,
Nagel
RL
.
Shear stress enhances the proteolysis of von Willebrand factor in normal plasma
.
Blood
.
1994
;
83
(
8
):
2171
-
2179
.
105.
Dong
J
,
Moake
JL
,
Nolasco
L
, et al
.
ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions
.
Blood
.
2002
;
100
(
12
):
4033
-
4039
.
106.
Ikeda
Y
,
Handa
M
,
Kawano
K
, et al
.
The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress
.
J Clin Invest
.
1991
;
87
(
4
):
1234
-
1240
.
107.
Moake
JL
,
Turner
NA
,
Stathopoulos
NA
,
Nolasco
L
,
Hellums
JD
.
Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin
.
Blood
.
1988
;
71
(
5
):
1366
-
1374
.
108.
Chow
TW
,
Hellums
JD
,
Moake
JL
,
Kroll
MH
.
Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation
.
Blood
.
1992
;
80
(
1
):
113
-
120
.
109.
Bartoli
CR
,
Zhang
D
,
Kang
J
, et al
.
Clinical and in vitro evidence that subclinical hemolysis contributes to LVAD thrombosis
.
Ann Thorac Surg
.
2018
;
105
(
3
):
807
-
814
.
110.
Zhang
J
,
Bergeron
AL
,
Yu
Q
, et al
.
Platelet aggregation and activation under complex patterns of shear stress
.
Thromb Haemost
.
2002
;
88
(
5
):
817
-
821
.
111.
Zhang
J
,
Bergeron
AL
,
Yu
Q
, et al
.
Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation
.
Thromb Haemost
.
2003
;
90
(
4
):
672
-
678
.
112.
Tripodi
A
,
Chantarangkul
V
,
Böhm
M
, et al
.
Measurement of von Willebrand factor cleaving protease (ADAMTS-13): results of an international collaborative study involving 11 methods testing the same set of coded plasmas
.
J Thromb Haemost
.
2004
;
2
(
9
):
1601
-
1609
.
113.
Kokame
K
,
Nobe
Y
,
Kokubo
Y
,
Okayama
A
,
Miyata
T
.
FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay
.
Br J Haematol
.
2005
;
129
(
1
):
93
-
100
.
114.
Nascimbene
A
,
Hilton
T
,
Konkle
BA
,
Moake
JL
,
Frazier
OH
,
Dong
JF
.
von Willebrand factor proteolysis by ADAMTS-13 in patients on left ventricular assist device support
.
J Heart Lung Transplant
.
2017
;
36
(
4
):
477
-
479
.
115.
Fu
X
,
Chen
J
,
Gallagher
R
,
Zheng
Y
,
Chung
DW
,
López
JA
.
Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region
.
Blood
.
2011
;
118
(
19
):
5283
-
5291
.
116.
Mondal
NK
,
Sorensen
EN
,
Pham
SM
, et al
.
Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: differences in plasma redox status and leukocyte activation
.
Artif Organs
.
2016
;
40
(
5
):
434
-
443
.
117.
Mondal
NK
,
Chen
Z
,
Trivedi
JR
, et al
.
Association of oxidative stress and platelet receptor glycoprotein GPIbα and GPVI shedding during nonsurgical bleeding in heart failure patients with continuous-flow left ventricular assist device support
.
ASAIO J
.
2018
;
64
(
4
):
462
-
471
.
118.
Chen
J
,
Fu
X
,
Wang
Y
, et al
.
Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13
.
Blood
.
2010
;
115
(
3
):
706
-
712
.
119.
Wang
Y
,
Chen
J
,
Ling
M
,
López
JA
,
Chung
DW
,
Fu
X
.
Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation
.
J Biol Chem
.
2015
;
290
(
3
):
1422
-
1431
.
120.
Zhou
Z
,
Han
H
,
Cruz
MA
,
López
JA
,
Dong
JF
,
Guchhait
P
.
Haemoglobin blocks von Willebrand factor proteolysis by ADAMTS-13: a mechanism associated with sickle cell disease
.
Thromb Haemost
.
2009
;
101
(
6
):
1070
-
1077
.
121.
Martin
C
,
Morales
LD
,
Cruz
MA
.
Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha
.
J Thromb Haemost
.
2007
;
5
(
7
):
1363
-
1370
.
122.
Ju
L
.
Dynamic force spectroscopy analysis on the Redox states of protein disulphide bonds
.
Methods Mol Biol
.
2019
;
1967
:
115
-
131
.
123.
Yang
M
,
Houck
KL
,
Dong
X
, et al
.
Hyperadhesive von Willebrand factor promotes extracellular vesicle-induced angiogenesis: implication for LVAD-induced bleeding
.
JACC Basic Transl Sci
.
2022
;
7
(
3
):
247
-
261
.
124.
Suarez
J
,
Patel
CB
,
Felker
GM
,
Becker
R
,
Hernandez
AF
,
Rogers
JG
.
Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices
.
Circ Heart Fail
.
2011
;
4
(
6
):
779
-
784
.
125.
Zhou
Y
,
Qin
S
,
Hilton
T
, et al
.
Quantification of von Willebrand factor cleavage by adamts-13 in patients supported by left ventricular assist devices
.
ASAIO J
.
2017
;
63
(
6
):
849
-
853
.
126.
Heilmann
C
,
Geisen
U
,
Beyersdorf
F
, et al
.
Acquired von Willebrand syndrome in patients with ventricular assist device or total artificial heart
.
Thromb Haemost
.
2010
;
103
(
5
):
962
-
967
.
127.
Reich
HJ
,
Morgan
J
,
Arabia
F
, et al
.
Comparative analysis of von Willebrand factor profiles after implantation of left ventricular assist device and total artificial heart
.
J Thromb Haemost
.
2017
;
15
(
8
):
1620
-
1624
.
128.
Oezpeker
C
,
Zittermann
A
,
Baurichter
D
, et al
.
Changes in von Willebrand factor profile predicts clinical outcomes in patients on mechanical circulatory support
.
J Card Surg
.
2018
;
33
(
10
):
693
-
702
.
129.
Rauch
A
,
Legendre
P
,
Christophe
OD
, et al
.
Antibody-based prevention of von Willebrand factor degradation mediated by circulatory assist devices
.
Thromb Haemost
.
2014
;
112
(
5
):
1014
-
1023
.
130.
Connors
JM
,
Gregor
S
,
Crandall
D
,
Netuka
I
,
Mehra
MR
.
Low-intensity anti-coagulation using Vitamin K antagonists and factor X activity: a validation analysis of the MAGENTUM-1 study
.
J Heart Lung Transplant
.
2019
;
38
(
6
):
668
-
669
.
131.
Copeland
JG
.
SynCardia Total Artificial Heart: update and future
.
Tex Heart Inst J
.
2013
;
40
(
5
):
587
-
588
.
132.
Smadja
DM
,
Ivak
P
,
Pya
Y
, et al
.
Intermediate-dose prophylactic anticoagulation with low molecular weight heparin is safe after bioprosthetic artificial heart implantation
.
J Heart Lung Transplant
.
2022
;
41
(
9
):
1214
-
1217
.
133.
Cho
S-M
,
Moazami
N
,
Katz
S
,
Starling
R
,
Frontera
JA
.
Reversal and resumption of antithrombotic therapy in LVAD-associated intracranial hemorrhage
.
Ann Thorac Surg
.
2019
;
108
(
1
):
52
-
58
.
134.
Loyaga-Rendon
RY
,
Kazui
T
,
Acharya
D
.
Antiplatelet and anticoagulation strategies for left ventricular assist devices
.
Ann Transl Med
.
2021
;
9
(
6
):
521
.
135.
Kormos
RL
,
Cowger
J
,
Pagani
FD
, et al
.
The Society of Thoracic Surgeons Intermacs database annual report: evolving indications, outcomes, and scientific partnerships
.
J Heart Lung Transplant
.
2019
;
38
(
2
):
114
-
126
.
136.
Kassi
M
,
Agrawal
T
,
Xu
J
, et al
.
Outflow cannula alignment in continuous flow left ventricular devices is associated with stroke
.
Int J Artif Organs
.
2023
;
46
(
4
):
226
-
234
.
137.
Bishawi
M
,
Joseph
J
,
Patel
C
, et al
.
Risk factors for stroke on left ventricular assist devices
.
J Card Surg
.
2018
;
33
(
6
):
348
-
352
.
138.
Pullicino
PM
,
Halperin
JL
,
Thompson
JL
.
Stroke in patients with heart failure and reduced left ventricular ejection fraction
.
Neurology
.
2000
;
54
(
2
):
288
-
294
.
139.
Aggarwal
A
,
Gupta
A
,
Kumar
S
, et al
.
Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device?
.
ASAIO J
.
2012
;
58
(
5
):
509
-
513
.
140.
Menon
AK
,
Götzenich
A
,
Sassmannshausen
H
,
Haushofer
M
,
Autschbach
R
,
Spillner
JW
.
Low stroke rate and few thrombo-embolic events after HeartMate II implantation under mild anticoagulation
.
Eur J Cardio Thorac Surg
.
2012
;
42
(
2
):
319
-
323
. discussion 323.
141.
Najjar
SS
,
Slaughter
MS
,
Pagani
FD
, et al
.
An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial
.
J Heart Lung Transplant
.
2014
;
33
(
1
):
23
-
34
.
You do not currently have access to this content.
Sign in via your Institution