• A Met379 to lysine substitution in high– and low–molecular weight kininogen is linked to hereditary angioedema.

  • The mutation increases HK and LK susceptibility to cleavage by plasmin, resulting in release of Lys-bradykinin (kallidin).

Abstract

Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low–molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.

1.
Schmaier
AH
.
The hereditary angioedema syndromes
.
J Clin Invest
.
2019
;
129
(
1
):
66
-
68
.
2.
Lumry
WR
,
Settipane
RA
.
Hereditary angioedema: epidemiology and burden of disease
.
Allergy Asthma Proc
.
2020
;
41
(
suppl 1
):
S08
-
S13
.
3.
Wedner
HJ
.
Hereditary angioedema: pathophysiology (HAE type I, type II, and HAE nC1-INH)
.
Allergy Asthma Proc
.
2020
;
41
(
suppl 1
):
S14
-
S17
.
4.
Bork
K
,
Anderson
JT
,
Caballero
T
, et al
.
Assessment and management of disease burden and quality of life in patients with hereditary angioedema: a consensus report
.
Allergy Asthma Clin Immunol
.
2021
;
17
(
1
):
40
.
5.
Maurer
M
,
Magerl
M
.
Differences and similarities in the mechanisms and clinical expression of bradykinin-mediated vs. mast cell-mediated angioedema
.
Clin Rev Allergy Immunol
.
2021
;
61
(
1
):
40
-
49
.
6.
Schmaier
AH
.
The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities
.
J Thromb Haemost
.
2016
;
14
(
1
):
28
-
39
.
7.
Long
AT
,
Kenne
E
,
Jung
R
,
Fuchs
TA
,
Renné
T
.
Contact system revisited: an interface between inflammation, coagulation, and innate immunity
.
J Thromb Haemost
.
2016
;
14
(
3
):
427
-
437
.
8.
Maas
C
,
Renné
T
.
Coagulation factor XII in thrombosis and inflammation
.
Blood
.
2018
;
131
(
17
):
1903
-
1909
.
9.
Ivanov
I
,
Matafonov
A
,
Sun
M-F
, et al
.
Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation
.
Blood
.
2017
;
129
(
11
):
1527
-
1537
.
10.
Ivanov
I
,
Matafonov
A
,
Sun
MF
, et al
.
A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain
.
Blood
.
2019
;
133
(
10
):
1152
-
1163
.
11.
Shamanaev
A
,
Litvak
M
,
Ivanov
I
, et al
.
Factor XII structure-function relationships
.
Semin Thromb Hemost
.
Published online 5 June 2023
.
12.
Dagnino
APA
,
Campos
MM
,
Silva
RBM
.
Kinins and their receptors in infectious diseases
.
Pharmaceuticals
.
2020
;
13
(
9
):
215
.
13.
Marceau
F
,
Bachelard
H
,
Bouthillier
J
, et al
.
Bradykinin receptors: Agonists, antagonists, expression, signaling, and adaptation to sustained stimulation
.
Int Immunopharmacol
.
2020
;
82
:
106305
.
14.
Iwaki
T
,
Castellino
FJ
.
Plasma levels of bradykinin are suppressed in factor XII-deficient mice
.
Thromb Haemost
.
2006
;
95
(
6
):
1003
-
1010
.
15.
Revenko
AS
,
Gao
D
,
Crosby
JR
, et al
.
Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding
.
Blood
.
2011
;
118
(
19
):
5302
-
5311
.
16.
Zeerleder
S
.
C1-inhibitor: more than a serine protease inhibitor
.
Sem Thromb Hemost
.
2011
;
37
(
4
):
362
-
374
.
17.
Ryø
LB
,
Haslund
D
,
Rovsing
AB
, et al
.
Restriction of C1-inhibitor activity in hereditary angioedema by dominant-negative effects of disease-associated SERPING1 gene variants
.
J Allergy Clin Immunol
.
2023
;
152
(
5
):
1218
-
1236.e9
.
18.
Sharma
J
,
Jindal
AK
,
Banday
AZ
, et al
.
Pathophysiology of hereditary angioedema (HAE) beyond the SERPING1 gene
.
Clin Rev Allergy Immunol
.
2021
;
60
(
3
):
305
-
315
.
19.
Bork
K
,
Machnig
T
,
Wulff
K
,
Witzke
G
,
Prusty
S
,
Hardt
J
.
Clinical features of hereditary angioedema with normal C1 inhibitor: a systematic review of qualitative evidence
.
Orphanet J Rare Dis
.
2020
;
15
(
1
):
289
.
20.
Veronez
CL
,
Csuka
D
,
Sheikh
FR
,
Zuraw
BL
,
Farkas
H
,
Bork
K
.
The expanding spectrum of mutations in hereditary angioedema
.
J Allergy Clin Immunol Pract
.
2021
;
9
(
6
):
2229
-
2234
.
21.
Shamanaev
A
,
Dickeson
SK
,
Ivanov
I
, et al
.
Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity
.
Front Physiol
.
2023
;
14
:
1146834
.
22.
Dewald
G
,
Bork
K
.
Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor
.
Biochem Biophys Res Commun
.
2006
;
343
(
4
):
1286
-
1289
.
23.
Bork
K
,
Wulff
K
,
Steinmüller-Magin
L
, et al
.
Hereditary angioedema with a mutation in the plasminogen gene
.
Allergy
.
2018
;
73
(
2
):
442
-
450
.
24.
Dewald
G
.
A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor
.
Biochem Biophys Res Commun
.
2018
;
498
(
1
):
193
-
198
.
25.
de Maat
S
,
Björkqvist
J
,
Suffritti
C
, et al
.
Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations
.
J Allergy Clin Immunol
.
2016
;
138
(
5
):
1414
-
1423.e9
.
26.
de Maat
S
,
Clark
CC
,
Boertien
M
, et al
.
Factor XII truncation accelerates activation in solution
.
J Thromb Haemost
.
2019
;
17
(
1
):
183
-
194
.
27.
Dickeson
SK
,
Kumar
S
,
Sun
MF
, et al
.
A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen
.
Blood
.
2022
;
139
(
18
):
2816
-
2829
.
28.
Hintze
S
,
Möhl
BS
,
Beyerl
J
, et al
.
Mutant plasminogen in hereditary angioedema is bypassing FXII/kallikrein to generate bradykinin
.
Front Physiol
.
2022
;
13
:
1090732
.
29.
Bork
K
,
Wulff
K
,
Rossmann
H
, et al
.
Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin
.
Allergy
.
2019
;
74
(
12
):
2479
-
2481
.
30.
Zubakova
R
,
Gille
A
,
Faussner
A
,
Hilgenfeldt
U
.
Ca2+ signaling of kinins in cells expressing rat, mouse and human B1/B2-receptor
.
Int Immunopharmacol
.
2008
;
8
(
2
):
276
-
281
.
31.
Clermont
A
,
Murugesan
N
,
Zhou
Q
, et al
.
Plasma kallikrein mediates vascular endothelial growth factor-induced retinal dysfunction and thickening
.
Invest Ophthalmol Vis Sci
.
2016
;
57
(
6
):
2390
-
2399
.
32.
Bhoola
KD
,
Figueroa
CD
,
Worthy
K
.
Bioregulation of kinins: kallikreins, kininogens and kinases
.
Pharmacol Rev
.
1992
;
44
(
1
):
1
-
80
.
33.
Colman
RW
,
Schmaier
AH
.
Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes
.
Blood
.
1997
;
90
(
10
):
3819
-
3843
.
34.
Lalmanach
G
,
Naudin
C
,
Lecaille
F
,
Fritz
H
.
Kininogens: more than cysteine protease inhibitors and kinin precursors
.
Biochimie
.
2010
;
92
(
11
):
1568
-
1579
.
35.
Ponczek
MB
.
High molecular weight kininogen: a review of the structural literature
.
Int J Mol Sci
.
2021
;
22
(
24
):
13370
.
36.
DeLa Cadena
RA
,
Colman
RW
.
The sequence HGLGHGHEQQHGLGHGH in the light chain of high molecular weight kininogen serves as a primary structural feature for zinc-dependent binding to an anionic surface
.
Protein Sci
.
1992
;
1
(
1
):
151
-
160
.
37.
Tait
JF
,
Fujikawa
K
.
Primary structure requirements for the binding of human high molecular weight kininogen to plasma prekallikrein and factor XI
.
J Biol Chem
.
1987
;
262
(
24
):
11651
-
11656
.
38.
Sueiras-Diaz
J
,
Jones
DM
,
Ashworth
D
,
Horton
J
,
Evans
DM
,
Szelke
M
.
Cleavage of human kininogen fragments at Met-Lys by human tissue kallikrein
.
Braz J Med Biol Res
.
1994
;
27
(
8
):
1935
-
1942
.
39.
Pathak
M
,
Wong
SS
,
Dreveny
I
,
Emsley
J
.
Structure of plasma and tissue kallikreins
.
Thromb Haemost
.
2013
;
110
(
3
):
423
-
433
.
40.
Scott
CF
,
Silver
LD
,
Purdon
AD
,
Colman
RW
.
Cleavage of human high molecular weight kininogen by factor XIa in vitro. Effect on structure and function
.
J Biol Chem
.
1985
;
260
(
19
):
10856
-
10863
.
41.
Kleniewski
J
,
Donaldson
VH
.
Comparison of human high molecular weight kininogen digestion by plasma kallikrein and by plasmin. A revised method of purification of high molecular weight kininogen
.
J Lab Clin Med
.
1987
;
109
(
4
):
469
-
479
.
42.
Kleniewski
J
,
Blankenship
DT
,
Cardin
AD
,
Donaldson
V
.
Mechanism of enhanced kinin release from high molecular weight kininogen by plasma kallikrein after its exposure to plasmin
.
J Lab Clin Med
.
1992
;
120
(
1
):
129
-
139
.
43.
Henderson
MW
,
Sparkenbaugh
EM
,
Wang
S
, et al
.
Plasmin-mediated cleavage of high molecular weight kininogen contributes to acetaminophen-induced acute liver failure
.
Blood
.
2021
;
138
(
3
):
259
-
272
.
44.
Selim
TE
,
Ghoneim
HR
,
Uknis
AB
,
Colman
RW
,
DeLa Cadena
RA
.
High-molecular-mass and low-molecular-mass kininogens block plasmin-induced platelet aggregation by forming a complex with kringle 5 of plasminogen/plasmin
.
Eur J Biochem
.
1997
;
250
(
2
):
532
-
538
.
45.
Law
RH
,
Caradoc-Davies
T
,
Cowieson
N
, et al
.
The X-ray crystal structure of full-length human plasminogen
.
Cell Rep
.
2012
;
1
(
3
):
185
-
190
.
46.
Law
RH
,
Abu-Ssaydeh
D
,
Whisstock
JC
.
New insights into the structure and function of the plasminogen/plasmin system
.
Curr Opin Struct Biol
.
2013
;
23
(
6
):
836
-
841
.
47.
Yin
YL
,
Ye
C
,
Zhou
F
, et al
.
Molecular basis for kinin selectivity and activation of the human bradykinin receptors
.
Nat Struct Mol Biol
.
2021
;
28
(
9
):
755
-
761
.
48.
Bork
K
,
Wulff
K
,
Möhl
BS
, et al
.
Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation
.
J Allergy Clin Immunol
.
2021
;
148
(
4
):
1041
-
1048
.
49.
Bafunno
V
,
Firinu
D
,
D’Apolito
M
, et al
.
Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema
.
J Allergy Clin Immunol
.
2018
;
141
(
3
):
1009
-
1017
.
50.
d'Apolito
M
,
Santacroce
R
,
Colia
AL
,
Cordisco
G
,
Maffione
AB
,
Margaglione
M
.
Angiopoietin-1 haploinsufficiency affects the endothelial barrier and causes hereditary angioedema
.
Clin Exp Allergy
.
2019
;
49
(
5
):
626
-
635
.
51.
Ariano
A
,
D’Apolito
M
,
Bova
M
, et al
.
A myoferlin gain-of-function variant associates with a new type of hereditary angioedema
.
Allergy
.
2020
;
75
(
11
):
2989
-
2992
.
52.
Kaplan
AP
,
Austen
KF
.
A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin
.
J Exp Med
.
1971
;
133
(
4
):
696
-
712
.
53.
Maas
C
.
Plasminflammation-an emerging pathway to bradykinin production
.
Front Immunol
.
2019
;
10
:
2046
.
54.
Jukema
BN
,
de Maat
S
,
Maas
C
.
Processing of factor XII during inflammatory reactions
.
Front Med
.
2016
;
3
:
52
.
55.
Gailani
D
,
Tillman
BF
,
Wheeler
AP
. Rare coagulation factor deficiencies. In:
Hoffman
R
,
Benz
EJ
,
Silberstein
LE
, eds.
Hematology: Basic Principles and Practice
. 8th ed.
Elsevier
;
2018
:
2125
-
2143
.
56.
Marcos-Contreras
OA
,
Martinez de Lizarrondo
S
,
Bardou
I
, et al
.
Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism
.
Blood
.
2016
;
128
(
20
):
2423
-
2434
.
57.
Gauberti
M
,
Potzeha
F
,
Vivien
D
,
Martinez de Lizarrondo
S
.
Impact of bradykinin generation during thrombolysis in ischemic stroke
.
Front Med
.
2018
;
5
:
195
.
58.
Molinaro
G
,
Gervais
N
,
Adam
A
.
Biochemical basis of angioedema associated with recombinant tissue plasminogen activator treatment: an in vitro experimental approach
.
Stroke
.
2002
;
33
(
6
):
1712
-
1716
.
59.
Smolinska
S
,
Antolín-Amérigo
D
,
Popescu
FD
.
Bradykinin metabolism and drug-induced angioedema
.
Int J Mol Sci
.
2023
;
24
(
14
):
11649
.
60.
Wilkerson
RG
,
Winters
ME
.
Angiotensin-converting enzyme inhibitor-induced angioedema
.
Immunol Allergy Clin North Am
.
2023
;
43
(
3
):
513
-
532
.
61.
Wu
YH
,
Tsai
KC
,
Ho
MP
.
Tranexamic acid use for ACE inhibitor induced angioedema
.
Am J Emerg Med
.
2022
;
59
:
189
.
62.
Stoldt
J
,
Cox
C
,
Matusz
E
.
Tranexamic acid use in the setting of ACE inhibitor induced angioedema
.
Am J Emerg Med
.
2022
;
55
:
230.e3
-
230.e4
.
63.
Wang
K
,
Santiago
R
.
Tranexamic acid - a narrative review for the emergency medicine clinician
.
Am J Emerg Med
.
2022
;
56
:
33
-
44
.
64.
Pathak
GN
,
Truong
TM
,
Chakraborty
A
,
Rao
B
,
Monteleone
C
.
Tranexamic acid for ACE inhibitor-induced angioedema
.
Clin Exp Emerg Med
.
Published online 1 August 2023
.
65.
Bork
K
,
Wulff
K
,
Witzke
G
,
Machnig
T
,
Hardt
J
.
Treatment of patients with hereditary angioedema with the c.988A>G (p.Lys330Glu) variant in the plasminogen gene
.
Orphanet J Rare Dis
.
2020
;
15
(
1
):
52
.
66.
Caballero
T
.
Treatment of hereditary angioedema
.
J Investig Allergol Clin Immunol
.
2021
;
31
(
1
):
1
-
16
.
67.
Kaplan
A
.
Hereditary angioedema: investigational therapies and future research
.
Allergy Asthma Proc
.
2020
;
41
(
suppl 1
):
S51
-
S54
.
You do not currently have access to this content.
Sign in via your Institution