• Carnitine pools in stored human and murine RBCs are regulated by genetic polymorphisms in the SLC22A16 and SLC22A5 transporters.

  • Carnitine pools fuel the Lands cycle for damaged membrane lipid repair during RBC aging, affecting hemolysis in vitro and in vivo.

Abstract

Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.

1.
Childs
B
.
Sir Archibald Garrod's conception of chemical individuality: a modern appreciation
.
N Engl J Med
.
1970
;
282
(
2
):
71
-
77
.
2.
van 't Erve
TJ
,
Wagner
BA
,
Martin
SM
, et al
.
The heritability of metabolite concentrations in stored human red blood cells
.
Transfusion
.
2014
;
54
(
8
):
2055
-
2063
.
3.
Surendran
P
,
Stewart
ID
,
Au Yeung
VPW
, et al
.
Rare and common genetic determinants of metabolic individuality and their effects on human health
.
Nat Med
.
2022
;
28
(
11
):
2321
-
2332
.
4.
Yoshida
T
,
Prudent
M
,
D'Alessandro
A
.
Red blood cell storage lesion: causes and potential clinical consequences
.
Blood Transfus
.
2019
;
17
(
1
):
27
-
52
.
5.
Kanias
T
,
Lanteri
MC
,
Page
GP
, et al
.
Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study
.
Blood Adv
.
2017
;
1
(
15
):
1132
-
1141
.
6.
Roubinian
NH
,
Reese
SE
,
Qiao
H
, et al
.
Donor genetic and nongenetic factors affecting red blood cell transfusion effectiveness
.
JCI Insight
.
2022
;
7
(
1
):
e152598
.
7.
D'Alessandro
A
,
Hod
EA
.
Red blood cell storage: from genome to exposome towards personalized transfusion medicine
.
Transfus Med Rev
.
2023
;
37
(
4
):
150750
.
8.
Nemkov
T
,
Stefanoni
D
,
Bordbar
A
, et al
.
Blood donor exposome and impact of common drugs on red blood cell metabolism
.
JCI Insight
.
2021
;
6
(
3
):
e146175
.
9.
Donovan
K
,
Meli
A
,
Cendali
F
, et al
.
Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter
.
Haematologica
.
2022
;
107
(
1
):
298
-
302
.
10.
D’Alessandro
A
,
Earley
EJ
,
Nemkov
T
, et al
.
Genetic polymorphisms and expression of Rhesus blood group RHCE are associated with 2,3-bisphosphoglycerate in humans at high altitude
.
Proc Natl Acad Sci U S A
.
2024
;
121
(
1
):
e2315930120
.
11.
Kanias
T
,
Stone
M
,
Page
GP
, et al
.
Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis
.
Transfusion
.
2019
;
59
(
1
):
67
-
78
.
12.
Peffer
K
,
den Heijer
M
,
de Kort
WLAM
,
Verbeek
ALM
,
Atsma
F
.
Cardiovascular risk in 159 934 frequent blood donors while addressing the healthy donor effect
.
Heart
.
2019
;
105
(
16
):
1260
-
1265
.
13.
Paglia
G
,
D'Alessandro
A
,
Rolfsson
O
, et al
.
Biomarkers defining the metabolic age of red blood cells during cold storage
.
Blood
.
2016
;
128
(
13
):
e43
-
50
.
14.
Nemkov
T
,
Stephenson
D
,
Erickson
C
, et al
.
Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo
.
Blood
.
2024
;
143
(
5
):
456
-
472
.
15.
van 't Erve
TJ
,
Doskey
CM
,
Wagner
BA
, et al
.
Heritability of glutathione and related metabolites in stored red blood cells
.
Free Radic Biol Med
.
2014
;
76
:
107
-
113
.
16.
Van 't Erve
TJ
,
Wagner
BA
,
Martin
SM
, et al
.
The heritability of hemolysis in stored human red blood cells
.
Transfusion
.
2015
;
55
(
6
):
1178
-
1185
.
17.
Howie
HL
,
Hay
AM
,
de Wolski
K
, et al
.
Differences in steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice
.
Blood Adv
.
2019
;
3
(
15
):
2272
-
2285
.
18.
D’Alessandro
A
,
Anastasiadi
AT
,
Tzounakas
VL
, et al
.
Red blood cell metabolism in vivo and in vitro
.
Metabolites
.
2023
;
13
(
7
):
793
.
19.
Endres-Dighe
SM
,
Guo
Y
,
Kanias
T
, et al
.
Blood, sweat, and tears: red blood cell-omics study objectives, design, and recruitment activities
.
Transfusion
.
2019
;
59
(
1
):
46
-
56
.
20.
D'Alessandro
A
,
Culp-Hill
R
,
Reisz
JA
, et al
.
Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics
.
Transfusion
.
2019
;
59
(
1
):
89
-
100
.
21.
Lanteri
MC
,
Kanias
T
,
Keating
S
, et al
.
Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study
.
Transfusion
.
2019
;
59
(
1
):
79
-
88
.
22.
Nemkov
T
,
Yoshida
T
,
Nikulina
M
,
D’Alessandro
A
.
High-throughput metabolomics platform for the rapid data-driven development of novel additive solutions for blood storage
.
Front Physiol
.
2022
;
13
:
833242
.
23.
Josephson
CD
,
Glynn
S
,
Mathew
S
, et al
.
The recipient epidemiology and donor evaluation study-IV-pediatric (REDS-IV-P): a research program striving to improve blood donor safety and optimize transfusion outcomes across the lifespan
.
Transfusion
.
2022
;
62
(
5
):
982
-
999
.
24.
Moore
A
,
Busch
MP
,
Dziewulska
K
, et al
.
Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors
.
J Biol Chem
.
2022
;
298
(
12
):
102706
.
25.
Page
GP
,
Kanias
T
,
Guo
YJ
, et al
.
Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage
.
J Clin Invest
.
2021
;
131
(
13
):
e146077
.
26.
Guo
Y
,
Busch
MP
,
Seielstad
M
, et al
.
Development and evaluation of a transfusion medicine genome wide genotyping array
.
Transfusion
.
2019
;
59
(
1
):
101
-
111
.
27.
Delaneau
O
,
Coulonges
C
,
Zagury
J-F
.
Shape-IT: new rapid and accurate algorithm for haplotype inference
.
BMC Bioinf
.
2008
;
9
(
1
):
540
.
28.
Howie
B
,
Marchini
J
,
Stephens
M
.
Genotype imputation with thousands of genomes
.
G3 (Bethesda)
.
2011
;
1
(
6
):
457
-
470
.
29.
Zheng
X
,
Levine
D
,
Shen
J
,
Gogarten
SM
,
Laurie
C
,
Weir
BS
.
A high-performance computing toolset for relatedness and principal component analysis of SNP data
.
Bioinformatics
.
2012
;
28
(
24
):
3326
-
3328
.
30.
Aulchenko
YS
,
Struchalin
MV
,
van Duijn
CM
.
ProbABEL package for genome-wide association analysis of imputed data
.
BMC Bioinf
.
2010
;
11
(
1
):
134
.
31.
Perry
JA
,
Gaynor
BJ
,
Mitchell
BD
,
O’Connell
JR
.
An omics analysis search and information system (OASIS) for enabling biological discovery in the Old Order Amish
.
bioRxiv
.
Preprint posted online 3 May 2021
.
32.
Morgan
AP
,
Welsh
CE
.
Informatics resources for the collaborative cross and related mouse populations
.
Mamm Genome
.
2015
;
26
(
9-10
):
521
-
539
.
33.
Saxena
RK
,
Bhardwaj
N
,
Sachar
S
,
Puri
N
,
Khandelwal
S
.
A double in vivo biotinylation technique for objective assessment of aging and clearance of mouse erythrocytes in blood circulation
.
Transfus Med Hemother
.
2012
;
39
(
5
):
335
-
341
.
34.
D'Alessandro
A
,
Blasi
B
,
D'Amici
GM
,
Marrocco
C
,
Zolla
L
.
Red blood cell subpopulations in freshly drawn blood: application of proteomics and metabolomics to a decades-long biological issue
.
Blood Transfus
.
2013
;
11
(
1
):
75
-
87
.
35.
Arduini
A
,
Mancinelli
G
,
Radatti
GL
,
Dottori
S
,
Molajoni
F
,
Ramsay
RR
.
Role of carnitine and carnitine palmitoyl transferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes
.
J Biol Chem
.
1992
;
267
(
18
):
12673
-
12681
.
36.
Broman
KW
,
Gatti
DM
,
Simecek
P
, et al
.
R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations
.
Genetics
.
2019
;
211
(
2
):
495
-
502
.
37.
Keele
GR
.
Which mouse multiparent population is right for your study? the collaborative cross inbred strains, their F1 hybrids, or the diversity outbred population
.
G3 (Bethesda)
.
2023
;
13
(
4
):
jkad027
.
38.
Roubinian
NH
,
Plimier
C
,
Woo
JP
, et al
.
Effect of donor, component, and recipient characteristics on hemoglobin increments following red blood cell transfusion
.
Blood
.
2019
;
134
(
13
):
1003
-
1013
.
39.
National Heart, Lung, and Blood Institute
.
Recipient Epidemiology and Donor Evaluation Study III (REDS III) Vein to Vein Databases
. Accessed 30 April 2024. https://biolincc.nhlbi.nih.gov/studies/reds_iii/.
40.
Karafin
MS
,
Bruhn
R
,
Westlake
M
, et al
.
Demographic and epidemiologic characterization of transfusion recipients from four US regions: evidence from the REDS-III recipient database
.
Transfusion
.
2017
;
57
(
12
):
2903
-
2913
.
41.
Pang
Z
,
Chong
J
,
Zhou
G
, et al
.
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights
.
Nucleic Acids Res
.
2021
;
49
(
W1
):
W388
-
W396
.
42.
Houten
SM
.
Metabolomics: unraveling the chemical individuality of common human diseases
.
Ann Med
.
2009
;
41
(
6
):
402
-
407
.
43.
Bissinger
R
,
Nemkov
T
,
D'Alessandro
A
, et al
.
Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism
.
Kidney Int
.
2021
;
100
(
6
):
1227
-
1239
.
44.
Romero
FJ
,
Ordoñez
I
,
Arduini
A
,
Cadenas
E
.
The reactivity of thiols and disulfides with different redox states of myoglobin. redox and addition reactions and formation of thiyl radical intermediates
.
J Biol Chem
.
1992
;
267
(
3
):
1680
-
1688
.
45.
Arduini
A
,
Holme
S
,
Sweeney
JD
,
Dottori
S
,
Sciarroni
AF
,
Calvani
M
.
Addition of L-carnitine to additive solution-suspended red cells stored at 4 degrees C reduces in vitro hemolysis and improves in vivo viability
.
Transfusion
.
1997
;
37
(
2
):
166
-
174
.
46.
Bonomini
M
,
Zammit
V
,
Pusey
CD
,
De Vecchi
A
,
Arduini
A
.
Pharmacological use of L-carnitine in uremic anemia: has its full potential been exploited?
.
Pharmacol Res
.
2011
;
63
(
3
):
157
-
164
.
47.
Xu
P
,
Chen
C
,
Zhang
Y
, et al
.
Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis
.
Cell Metab
.
2022
;
34
(
2
):
299
-
316.e6
.
48.
Bacher
P
,
Giersiefer
S
,
Bach
M
,
Fork
C
,
Schömig
E
,
Gründemann
D
.
Substrate discrimination by ergothioneine transporter SLC22A4 and carnitine transporter SLC22A5: Gain-of-function by interchange of selected amino acids
.
Biochim Biophys Acta
.
2009
;
1788
(
12
):
2594
-
2602
.
49.
Hazegh
K
,
Fang
F
,
Bravo
MD
, et al
.
Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress
.
Transfusion
.
2021
;
61
(
2
):
435
-
448
.
50.
Alexander
K
,
Hazegh
K
,
Fang
F
, et al
.
Testosterone replacement therapy in blood donors modulates erythrocyte metabolism and susceptibility to hemolysis in cold storage
.
Transfusion
.
2021
;
61
(
1
):
108
-
123
.
51.
Zimring
JC
,
Smith
N
,
Stowell
SR
, et al
.
Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model
.
Transfusion
.
2014
;
54
(
1
):
137
-
148
.
52.
Sreoshi
C
,
Rajiv
KS
. A double in vivo Biotinylation technique to assess erythrocyte turnover in blood circulation. In:
Gemert
AWMMK-v
, eds.
Transfusion Medicine and Scientific Developments
.
Rijeka: IntechOpen
;
2017
.
53.
Mueller
TJ
,
Jackson
CW
,
Dockter
ME
,
Morrison
M
.
Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the band 4.1a:4.1b ratio
.
J Clin Invest
.
1987
;
79
(
2
):
492
-
499
.
54.
Rapido
F
,
Brittenham
GM
,
Bandyopadhyay
S
, et al
.
Prolonged red cell storage before transfusion increases extravascular hemolysis
.
J Clin Invest
.
2017
;
127
(
1
):
375
-
382
.
55.
Howie
HL
,
Hay
AM
,
de Wolski
K
, et al
.
Differences in steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice
.
Blood Adv
.
2019
;
3
(
15
):
2272
-
2285
.
56.
Sweeney
JD
,
Arduini
A
.
L-carnitine and its possible role in red cell and platelet storage
.
Transfus Med Rev
.
2004
;
18
(
1
):
58
-
65
.
57.
Hess
JR
,
Hill
HR
,
Oliver
CK
,
Lippert
LE
,
Greenwalt
TJ
.
Alkaline CPD and the preservation of RBC 2,3-DPG
.
Transfusion
.
2002
;
42
(
6
):
747
-
752
.
58.
D'Alessandro
A
,
Reisz
JA
,
Culp-Hill
R
,
Korsten
H
,
van Bruggen
R
,
de Korte
D
.
Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells
.
Transfusion
.
2018
;
58
(
8
):
1992
-
2002
.
59.
DʼAlessandro
A
,
Yoshida
T
,
Nestheide
S
, et al
.
Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery
.
Transfusion
.
2020
;
60
(
4
):
786
-
798
.
60.
Nemkov
T
,
Skinner
S
,
Diaw
M
, et al
.
Plasma levels of acyl-carnitines and carboxylic acids correlate with cardiovascular and kidney function in subjects with sickle cell trait
.
Front Physiol
.
2022
;
13
:
916197
.
61.
Wu
H
,
Bogdanov
M
,
Zhang
Y
, et al
.
Hypoxia-mediated impaired erythrocyte lands’ cycle is pathogenic for sickle cell disease
.
Sci Rep
.
2016
;
6
(
1
):
29637
.
62.
Roy
MK
,
Cendali
F
,
Ooyama
G
,
Gamboni
F
,
Morton
H
,
D'Alessandro
A
.
Red blood cell metabolism in pyruvate kinase deficient patients
.
Front Physiol
.
2021
;
12
:
735543
.
63.
Allen
DW
,
Manning
N
.
Abnormal phospholipid metabolism in spur cell anemia: decreased fatty acid incorporation into phosphatidylethanolamine and increased incorporation into acylcarnitine in spur cell anemia erythrocytes
.
Blood
.
1994
;
84
(
4
):
1283
-
1287
.
64.
Nemkov
T
,
Skinner
SC
,
Nader
E
, et al
.
Acute cycling exercise induces changes in red blood cell deformability and membrane lipid remodeling
.
Int J Mol Sci
.
2021
;
22
(
2
):
896
.
65.
Thomas
T
,
Stefanoni
D
,
Dzieciatkowska
M
, et al
.
Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients
.
J Proteome Res
.
2020
;
19
(
11
):
4455
-
4469
.
66.
Yang
WS
,
Stockwell
BR
.
Ferroptosis: death by lipid peroxidation
.
Trends Cell Biol
.
2016
;
26
(
3
):
165
-
176
.
67.
Himbert
S
,
Qadri
SM
,
Sheffield
WP
,
Schubert
P
,
D’Alessandro
A
,
Rheinstädter
MC
.
Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity
.
PLoS One
.
2021
;
16
(
11
):
e0259267
.
68.
Roussel
C
,
Morel
A
,
Dussiot
M
, et al
.
Rapid clearance of storage-induced micro erythrocytes alters transfusion recovery
.
Blood
.
2021
;
137
(
17
):
2285
-
2298
.
69.
Svenson
KL
,
Gatti
DM
,
Valdar
W
, et al
.
High-resolution genetic mapping using the mouse diversity outbred population
.
Genetics
.
2012
;
190
(
2
):
437
-
447
.
70.
Dumont
LJ
,
AuBuchon
JP
.
Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials
.
Transfusion
.
2008
;
48
(
6
):
1053
-
1060
.
71.
Francis
RO
,
D'Alessandro
A
,
Eisenberger
A
, et al
.
Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion
.
J Clin Invest
.
2020
;
130
(
5
):
2270
-
2285
.
72.
D'Alessandro
A
,
Nouraie
SM
,
Zhang
Y
, et al
.
Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients, as a function of therapeutic transfusion and hydroxyurea treatment
.
bioRxiv
.
Preprint posted online 6 April 2023
.
73.
Vallelian
F
,
Buehler
PW
,
Schaer
DJ
.
Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics
.
Blood
.
2022
;
140
(
17
):
1837
-
1844
.
74.
Xie
T
,
Chen
C
,
Peng
Z
, et al
.
Erythrocyte metabolic reprogramming by sphingosine 1-phosphate in chronic kidney disease and therapies
.
Circ Res
.
2020
;
127
(
3
):
360
-
375
.
75.
Stockwell
BR
.
Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications
.
Cell
.
2022
;
185
(
14
):
2401
-
2421
.
You do not currently have access to this content.
Sign in via your Institution