• Abrogation of RelA, Myd88, and IRAK4 consistently suppressed disease hallmarks of leukocytosis, splenomegaly, and bone marrow dysfunction.

  • IRAK4 inhibitor CA-4948 effectively reduced leukemic engraftment of PDX models of myelofibrosis.

Abstract

Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient–derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor–associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.

1.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med
.
2013
;
369
(
25
):
2379
-
2390
.
2.
Balandran
JC
,
Lasry
A
,
Aifantis
I
.
The role of inflammation in the initiation and progression of myeloid neoplasms
.
Blood Cancer Discov
.
2023
;
4
(
4
):
254
-
266
.
3.
Fisher
DAC
,
Fowles
JS
,
Zhou
A
,
Oh
ST
.
Inflammatory pathophysiology as a contributor to myeloproliferative neoplasms
.
Front Immunol
.
2021
;
12
:
683401
.
4.
Mesa
R
.
Myeloproliferative neoplasms: inflammation and treatment
.
Blood Cancer Discov
.
2023
;
4
(
Suppl 3
):
IA22
.
5.
Ferrall-Fairbanks
MC
,
Dhawan
A
,
Johnson
B
, et al
.
Progenitor hierarchy of chronic myelomonocytic leukemia identifies inflammatory monocytic-biased trajectory linked to worse outcomes
.
Blood Cancer Discov
.
2022
;
3
(
6
):
536
-
553
.
6.
Tefferi
A
,
Vaidya
R
,
Caramazza
D
,
Finke
C
,
Lasho
T
,
Pardanani
A
.
Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study
.
J Clin Oncol
.
2011
;
29
(
10
):
1356
-
1363
.
7.
Zhou
A
,
Kong
T
,
Fowles
JS
, et al
.
Hepcidin is elevated in primary and secondary myelofibrosis and remains elevated in patients treated with ruxolitinib
.
Br J Haematol
.
2022
;
197
(
4
):
e49
-
e52
.
8.
Fisher
DAC
,
Miner
CA
,
Engle
EK
, et al
.
Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFkappaB signaling
.
Leukemia
.
2019
;
33
(
8
):
1978
-
1995
.
9.
Fisher
DAC
,
Malkova
O
,
Engle
EK
, et al
.
Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia
.
Leukemia
.
2017
;
31
(
9
):
1962
-
1974
.
10.
Starczynowski
DT
,
Kuchenbauer
F
,
Argiropoulos
B
, et al
.
Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype
.
Nat Med
.
2010
;
16
(
1
):
49
-
58
.
11.
Boldin
MP
,
Taganov
KD
,
Rao
DS
, et al
.
miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice
.
J Exp Med
.
2011
;
208
(
6
):
1189
-
1201
.
12.
Kong
T
,
Laranjeira
ABA
,
Collins
TB
, et al
.
Pevonedistat targets malignant cells in myeloproliferative neoplasms in vitro and in vivo via NFkappaB pathway inhibition
.
Blood Adv
.
2022
;
6
(
2
):
611
-
623
.
13.
Ades
L
,
Girshova
L
,
Doronin
VA
, et al
.
Pevonedistat plus azacitidine vs azacitidine alone in higher-risk MDS/chronic myelomonocytic leukemia or low-blast-percentage AML
.
Blood Adv
.
2022
;
6
(
17
):
5132
-
5145
.
14.
Bennett
J
,
Starczynowski
DT
.
IRAK1 and IRAK4 as emerging therapeutic targets in hematologic malignancies
.
Curr Opin Hematol
.
2022
;
29
(
1
):
8
-
19
.
15.
Mascarenhas
J
,
Kremyanskaya
M
,
Patriarca
A
, et al
.
MANIFEST: pelabresib in combination with ruxolitinib for Janus kinase inhibitor treatment-naïve myelofibrosis
.
J Clin Oncol
.
2023
.
16.
Kong
T
,
Laranjeira
A
,
Oh
S
.
Abstract PR02: RSK1 targeting impedes oncogenic driver and inflammatory cytokine signaling to attenuate myeloid neoplasms
.
Blood Cancer Discov
.
2023
;
4
(
Suppl 3
):
PR02
.
17.
Bennett
JR
,
Ishikawa
C
,
Agarwal
P
, et al
.
Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML
.
Blood
.
2023
;
142
(
11
):
989
-
1007
.
18.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
19.
Stein
SJ
,
Baldwin
AS
.
Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function
.
Blood
.
2013
;
121
(
25
):
5015
-
5024
.
20.
Fuchs
A
,
Monlish
DA
,
Ghosh
S
, et al
.
Trauma induces emergency hematopoiesis through IL-1/MyD88-dependent production of G-CSF
.
J Immunol
.
2019
;
202
(
10
):
3020
-
3032
.
21.
Celik
H
,
Krug
E
,
Zhang
CR
, et al
.
A humanized animal model predicts clonal evolution and therapeutic vulnerabilities in myeloproliferative neoplasms
.
Cancer Discov
.
2021
;
11
(
12
):
3126
-
3141
.
22.
Kong
T
,
Yu
L
,
Laranjeira
ABA
, et al
.
Comprehensive profiling of clinical JAK inhibitors in myeloproliferative neoplasms
.
Am J Hematol
.
2023
;
98
(
7
):
1029
-
1042
.
23.
Kong
T
,
Laranjeira
ABA
,
Yang
K
, et al
.
DUSP6 mediates resistance to JAK2 inhibition and drives leukemic progression
.
Nat Cancer
.
2023
;
4
(
1
):
108
-
127
.
24.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
25.
Pikman
Y
,
Lee
BH
,
Mercher
T
, et al
.
MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia
.
PLoS Med
.
2006
;
3
(
7
):
e270
.
26.
Fang
J
,
Barker
B
,
Bolanos
L
, et al
.
Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-kappaB gene network
.
Cell Rep
.
2014
;
8
(
5
):
1328
-
1338
.
27.
Zhao
JL
,
Rao
DS
,
Boldin
MP
,
Taganov
KD
,
O'Connell
RM
,
Baltimore
D
.
NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
22
):
9184
-
9189
.
28.
Zhao
JL
,
Rao
DS
,
O'Connell
RM
,
Garcia-Flores
Y
,
Baltimore
D
.
MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice
.
Elife
.
2013
;
2
:
e00537
.
29.
Muto
T
,
Walker
CS
,
Choi
K
, et al
.
Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs
.
Nat Immunol
.
2020
;
21
(
5
):
535
-
545
.
30.
Garcia-Manero
G
,
Winer
ES
,
DeAngelo
DJ
, et al
.
Phase 1/2a study of the IRAK4 inhibitor CA-4948 as monotherapy or in combination with azacitidine or venetoclax in patients with relapsed/refractory (R/R) acute myeloid leukemia or lyelodysplastic syndrome
.
J Clin Oncol
.
2022
;
40
(
suppl 16
):
7016
.
31.
Pardanani
AD
,
Levine
RL
,
Lasho
T
, et al
.
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients
.
Blood
.
2006
;
108
(
10
):
3472
-
3476
.
32.
Winer
ES
,
Verma
A
,
Groepper
S
, et al
.
Preliminary safety and efficacy of emavusertib (CA-4948) in acute myeloid leukemia patients with FLT3 mutation
.
Blood
.
2023
;
142
(
Suppl 1
):
2924
.
You do not currently have access to this content.
Sign in via your Institution