• At clinically-relevant doses, selective JAK1 and JAK2 inhibitors are well-tolerated and suppress IFN-γ–mediated STAT1 phosphorylation.

  • Selective JAK1 vs JAK2 inhibition differentially affects the clinical and laboratory manifestations of disease in mouse models of HLH.

Abstract

Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)–induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG–induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1−/−) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1−/− mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.

1.
Janka
GE
.
Familial and acquired hemophagocytic lymphohistiocytosis
.
Annu Rev Med
.
2012
;
63
:
233
-
246
.
2.
Stark
GR
,
Darnell
JE
.
The JAK-STAT pathway at twenty
.
Immunity
.
2012
;
36
(
4
):
503
-
514
.
3.
Morris
R
,
Kershaw
NJ
,
Babon
JJ
.
The molecular details of cytokine signaling via the JAK/STAT pathway
.
Protein Sci
.
2018
;
27
(
12
):
1984
-
2009
.
4.
Das
R
,
Guan
P
,
Sprague
L
, et al
.
Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis
.
Blood
.
2016
;
127
(
13
):
1666
-
1675
.
5.
Maschalidi
S
,
Sepulveda
FE
,
Garrigue
A
,
Fischer
A
,
de Saint Basile
G
.
Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice
.
Blood
.
2016
;
128
(
1
):
60
-
71
.
6.
Albeituni
S
,
Verbist
KC
,
Tedrick
PE
, et al
.
Mechanisms of action of ruxolitinib in murine models of hemophagocytic lymphohistiocytosis
.
Blood
.
2019
;
134
(
2
):
147
-
159
.
7.
Meyer
LK
,
Verbist
KC
,
Albeituni
S
, et al
.
JAK/STAT pathway inhibition sensitizes CD8 T cells to dexamethasone-induced apoptosis in hyperinflammation
.
Blood
.
2020
;
136
(
6
):
657
-
668
.
8.
Keenan
C
,
Nichols
KE
,
Albeituni
S
.
Use of the JAK inhibitor ruxolitinib in the treatment of hemophagocytic lymphohistiocytosis
.
Front Immunol
.
2021
;
12
:
614704
.
9.
Verstovsek
S
,
Kantarjian
H
,
Mesa
RA
, et al
.
Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis
.
N Engl J Med
.
2010
;
363
(
12
):
1117
-
1127
.
10.
Harrison
C
,
Kiladjian
JJ
,
Al-Ali
HK
, et al
.
JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis
.
N Engl J Med
.
2012
;
366
(
9
):
787
-
798
.
11.
Zeiser
R
,
Burchert
A
,
Lengerke
C
, et al
.
Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey
.
Leukemia
.
2015
;
29
(
10
):
2062
-
2068
.
12.
Villarino
AV
,
Kanno
Y
,
O'Shea
JJ
.
Mechanisms and consequences of Jak-STAT signaling in the immune system
.
Nat Immunol
.
2017
;
18
(
4
):
374
-
384
.
13.
Chaturvedi
V
,
Lakes
N
,
Tran
M
,
Castillo
N
,
Jordan
MB
.
JAK inhibition for murine HLH requires complete blockade of IFN-γ signaling and is limited by toxicity of JAK2 inhibition
.
Blood
.
2021
;
138
(
12
):
1034
-
1039
.
14.
Wernig
G
,
Kharas
MG
,
Okabe
R
, et al
.
Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera
.
Cancer Cell
.
2008
;
13
(
4
):
311
-
320
.
15.
Canna
SW
,
Wrobel
J
,
Chu
N
,
Kreiger
PA
,
Paessler
M
,
Behrens
EM
.
Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice
.
Arthritis Rheum
.
2013
;
65
(
7
):
1764
-
1775
.
16.
Behrens
EM
,
Canna
SW
,
Slade
K
, et al
.
Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice
.
J Clin Invest
.
2011
;
121
(
6
):
2264
-
2277
.
17.
Johnson
TS
,
Terrell
CE
,
Millen
SH
,
Katz
JD
,
Hildeman
DA
,
Jordan
MB
.
Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis
.
J Immunol
.
2014
;
192
(
1
):
84
-
91
.
18.
Albeituni
S
,
Oak
N
,
Tillman
HS
, et al
.
Cellular and transcriptional impacts of Janus kinase and/or IFN-gamma inhibition in a mouse model of primary hemophagocytic lymphohistiocytosis
.
Front Immunol
.
2023
;
14
:
1137037
.
19.
Law
CW
,
Chen
Y
,
Shi
W
,
Smyth
GK
.
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
.
Genome Biol
.
2014
;
15
(
2
):
R29
.
20.
Subramanian
A
,
Kuehn
H
,
Gould
J
,
Tamayo
P
,
Mesirov
JP
.
GSEA-P: a desktop application for gene set enrichment analysis
.
Bioinformatics
.
2007
;
23
(
23
):
3251
-
3253
.
21.
Covington
M
,
He
X
,
Scuron
M
, et al
.
Preclinical characterization of itacitinib (INCB039110), a novel selective inhibitor of JAK1, for the treatment of inflammatory diseases
.
Eur J Pharmacol
.
2020
;
885
:
173505
.
22.
Barbour
AM
,
Punwani
N
,
Epstein
N
, et al
.
Effect of itraconazole or rifampin on itacitinib pharmacokinetics when administered orally in healthy subjects
.
J Clin Pharmacol
.
2019
;
59
(
12
):
1641
-
1647
.
23.
Srinivas
N
,
Barbour
AM
,
Epstein
N
, et al
.
The effect of renal impairment on the pharmacokinetics and safety of itacitinib
.
J Clin Pharmacol
.
2020
;
60
(
8
):
1022
-
1029
.
24.
Huarte
E
,
O'Connor
RS
,
Peel
MT
, et al
.
Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy
.
Clin Cancer Res
.
2020
;
26
(
23
):
6299
-
6309
.
25.
Ogasawara
K
,
Zhou
S
,
Krishna
G
,
Palmisano
M
,
Li
Y
.
Population pharmacokinetics of fedratinib in patients with myelofibrosis, polycythemia vera, and essential thrombocythemia
.
Cancer Chemother Pharmacol
.
2019
;
84
(
4
):
891
-
898
.
26.
US Food and Drug Administration
.
Center for Drug Evaluation and Research, Drug Approval Package: INREBIC (fedratinib) NDA #212327
. Accessed 5 April 2023. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf.
27.
Evrot
E
,
Ebel
N
,
Romanet
V
, et al
.
JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease
.
Clin Cancer Res
.
2013
;
19
(
22
):
6230
-
6241
.
28.
Joly
JA
,
Vallée
A
,
Bourdin
B
, et al
.
Combined IFN-γ and JAK inhibition to treat hemophagocytic lymphohistiocytosis in mice
.
J Allergy Clin Immunol
.
2023
;
151
(
1
):
247
-
259.e7
.
29.
Loh
ML
,
Tasian
SK
,
Rabin
KR
, et al
.
A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a Children's Oncology Group phase 1 consortium study (ADVL1011)
.
Pediatr Blood Cancer
.
2015
;
62
(
10
):
1717
-
1724
.
30.
Weaver
LK
,
Chu
N
,
Behrens
EM
.
TLR9-mediated inflammation drives a Ccr2-independent peripheral monocytosis through enhanced extramedullary monocytopoiesis
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
39
):
10944
-
10949
.
31.
Binder
D
,
van den Broek
MF
,
Kägi
D
, et al
.
Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus
.
J Exp Med
.
1998
;
187
(
11
):
1903
-
1920
.
32.
Jordan
MB
,
Hildeman
D
,
Kappler
J
,
Marrack
P
.
An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder
.
Blood
.
2004
;
104
(
3
):
735
-
743
.
33.
Li
Y
,
Guo
R
,
Wang
L
,
Li
S
,
Zhu
Z
,
Tu
P
.
G-CSF administration results in thrombocytopenia by inhibiting the differentiation of hematopoietic progenitors into megakaryocytes
.
Biochem Pharmacol
.
2019
;
169
:
113624
.
34.
Debeurme
F
,
Lacout
C
,
Moratal
C
, et al
.
JAK2 inhibition has different therapeutic effects according to myeloproliferative neoplasm development in mice
.
J Cell Mol Med
.
2015
;
19
(
11
):
2564
-
2574
.
35.
Koschmieder
S
,
Mughal
TI
,
Hasselbalch
HC
, et al
.
Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both
.
Leukemia
.
2016
;
30
(
5
):
1018
-
1024
.
36.
Tefferi
A
,
Vaidya
R
,
Caramazza
D
,
Finke
C
,
Lasho
T
,
Pardanani
A
.
Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study
.
J Clin Oncol
.
2011
;
29
(
10
):
1356
-
1363
.
37.
Verstovsek
S
,
Mesa
RA
,
Gotlib
J
, et al
.
A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis
.
N Engl J Med
.
2012
;
366
(
9
):
799
-
807
.
38.
Kleppe
M
,
Kwak
M
,
Koppikar
P
, et al
.
JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response
.
Cancer Discov
.
2015
;
5
(
3
):
316
-
331
.
39.
Wang
J
,
Wang
Y
,
Wu
L
, et al
.
Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis
.
Haematologica
.
2020
;
105
(
5
):
e210
-
e212
.
40.
Zhang
Q
,
Wei
A
,
Ma
HH
, et al
.
A pilot study of ruxolitinib as a front-line therapy for 12 children with secondary hemophagocytic lymphohistiocytosis
.
Haematologica
.
2021
;
106
(
7
):
1892
-
1901
.
41.
Chi
Y
,
Liu
R
,
Zhou
ZX
,
Shi
XD
,
Ding
YC
,
Li
JG
.
Ruxolitinib treatment permits lower cumulative glucocorticoid dosing in children with secondary hemophagocytic lymphohistiocytosis
.
Pediatr Rheumatol Online J
.
2021
;
19
(
1
):
49
.
42.
Tang
Y
,
Xu
Q
,
Luo
H
, et al
.
Excessive IL-10 and IL-18 trigger hemophagocytic lymphohistiocytosis-like hyperinflammation and enhanced myelopoiesis
.
J Allergy Clin Immunol
.
2022
;
150
(
5
):
1154
-
1167
.
You do not currently have access to this content.
Sign in via your Institution