• FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally.

  • Aberrant FUS condensates diminish the binding of CTCF with chromatin and incite TAD-fusion events in aged HSCs.

Abstract

Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity. The molecular mechanisms behind this phenomenon are not fully understood. Here, we observed that the expression of FUS is increased in aged HSCs, and enforced FUS recapitulates the phenotype of aged HSCs through arginine-glycine-glycine–mediated aberrant FUS phase transition. By using Fus-gfp mice, we observed that FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally. The percentage of FUShigh HSCs is increased upon physiological aging and replication stress, and FUSlow HSCs of aged mice exhibit youthful function. Mechanistically, FUShigh HSCs exhibit a different global chromatin organization compared with FUSlow HSCs, which is observed in aged HSCs. Many topologically associating domains (TADs) are merged in aged HSCs because of the compromised binding of CCCTC-binding factor with chromatin, which is invoked by aberrant FUS condensates. It is notable that the transcriptional alteration between FUShigh and FUSlow HSCs originates from the merged TADs and is enriched in HSC aging-related genes. Collectively, this study reveals for the first time that aberrant FUS mobility promotes HSC aging by altering chromatin structure.

1.
Mejia-Ramirez
E
,
Florian
MC
.
Understanding intrinsic hematopoietic stem cell aging
.
Haematologica
.
2020
;
105
(
1
):
22
-
37
.
2.
Geiger
H
,
de Haan
G
,
Florian
MC
.
The ageing haematopoietic stem cell compartment
.
Nat Rev Immunol
.
2013
;
13
(
5
):
376
-
389
.
3.
Beerman
I
,
Bock
C
,
Garrison
BS
, et al
.
Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging
.
Cell Stem Cell
.
2013
;
12
(
4
):
413
-
425
.
4.
Sun
D
,
Luo
M
,
Jeong
M
, et al
.
Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
.
Cell Stem Cell
.
2014
;
14
(
5
):
673
-
688
.
5.
Chambers
SM
,
Shaw
CA
,
Gatza
C
,
Fisk
CJ
,
Donehower
LA
,
Goodell
MA
.
Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation
.
PLoS Biol
.
2007
;
5
(
8
):
e201
.
6.
Florian
MC
,
Klose
M
,
Sacma
M
, et al
.
Aging alters the epigenetic asymmetry of HSC division
.
PLoS Biol
.
2018
;
16
(
9
):
e2003389
.
7.
Wahlestedt
M
,
Norddahl
GL
,
Sten
G
, et al
.
An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state
.
Blood
.
2013
;
121
(
21
):
4257
-
4264
.
8.
Rowley
MJ
,
Corces
VG
.
Organizational principles of 3D genome architecture
.
Nat Rev Genet
.
2018
;
19
(
12
):
789
-
800
.
9.
Alberti
S
.
Phase separation in biology
.
Curr Biol
.
2017
;
27
(
20
):
1097
-
1102
.
10.
Shin
Y
,
Chang
Y-C
,
Lee
DSW
, et al
.
Liquid nuclear condensates mechanically sense and restructure the genome
.
Cell
.
2018
;
175
(
6
):
1481
-
1491.e13
.
11.
Gibson
BA
,
Doolittle
LK
,
Schneider
MWG
, et al
.
Organization of chromatin by intrinsic and regulated phase separation
.
Cell
.
2019
;
179
(
2
):
470
-
484.e21
.
12.
Strom
AR
,
Emelyanov
AV
,
Mir
M
,
Fyodorov
DV
,
Darzacq
X
,
Karpen
GHJN
.
Phase separation drives heterochromatin domain formation
.
Nature
.
2017
;
547
(
7662
):
241
-
245
.
13.
Zhang
C
,
Xu
Z
,
Yang
S
, et al
.
tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis
.
Cell Rep
.
2020
;
32
(
13
):
108206
.
14.
Servant
N
,
Varoquaux
N
,
Lajoie
BR
, et al
.
HiC-Pro: an optimized and flexible pipeline for Hi-C data processing
.
Genome Biol
.
2015
;
16
(
1
):
259
.
15.
Skene
PJ
,
Henikoff
JG
,
Henikoff
S
.
Targeted in situ genome-wide profiling with high efficiency for low cell numbers
.
Nat Protoc
.
2018
;
13
(
5
):
1006
-
1019
.
16.
Zhu
Q
,
Liu
N
,
Orkin
SH
,
Yuan
G-C
.
CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis
.
Genome Biol
.
2019
;
20
(
1
):
192
.
17.
Zaro
BW
,
Noh
JJ
,
Mascetti
VL
, et al
.
Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells
.
Elife
.
2020
;
9
:
e62210
.
18.
Nedelsky
NB
,
Taylor
JP
.
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease
.
Nat Rev Neurol
.
2019
;
15
(
5
):
272
-
286
.
19.
Murakami
T
,
Qamar
S
,
Lin
JQ
, et al
.
ALS/FTD Mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function
.
Neuron
.
2015
;
88
(
4
):
678
-
690
.
20.
Flach
J
,
Bakker
ST
,
Mohrin
M
, et al
.
Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells
.
Nature
.
2014
;
512
(
7513
):
198
-
202
.
21.
Dong
F
,
Hao
S
,
Zhang
S
, et al
.
Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis
.
Nat Cell Biol
.
2020
;
22
(
6
):
630
-
639
.
22.
Orford
KW
,
Scadden
DT
.
Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation
.
Nat Rev Genet
.
2008
;
9
(
2
):
115
-
128
.
23.
Flohr Svendsen
A
,
Yang
D
,
Kim
KM
, et al
.
A comprehensive transcriptome signature of murine hematopoietic stem cell aging
.
Blood
.
2021
;
138
(
6
):
439
-
451
.
24.
Portz
B
,
Lee
BL
,
Shorter
J
.
FUS and TDP-43 phases in health and disease
.
Trends Biochem Sci
.
2021
;
46
(
7
):
550
-
563
.
25.
Jung
J-H
,
Barbosa
AD
,
Hutin
S
, et al
.
A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis
.
Nature
.
2020
;
585
(
7824
):
256
-
260
.
26.
Fang
X
,
Wang
L
,
Ishikawa
R
, et al
.
Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes
.
Nature
.
2019
;
569
(
7755
):
265
-
269
.
27.
Rocha
A
,
Dalgarno
A
,
Neretti
N
.
The functional impact of nuclear reorganization in cellular senescence
.
Brief Funct Genomics
.
2022
;
21
(
1
):
24
-
34
.
28.
Nichols
Michael H
,
Corces
VG
.
A CTCF code for 3D genome architecture
.
Cell
.
2015
;
162
(
4
):
703
-
705
.
29.
Dixon
JR
,
Selvaraj
S
,
Yue
F
, et al
.
Topological domains in mammalian genomes identified by analysis of chromatin interactions
.
Nature
.
2012
;
485
(
7398
):
376
-
380
.
30.
Lupiáñez
DG
,
Kraft
K
,
Heinrich
V
, et al
.
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
.
Cell
.
2015
;
161
(
5
):
1012
-
1025
.
31.
Achinger-Kawecka
J
,
Clark
SJ
.
Disruption of the 3D cancer genome blueprint
.
Epigenomics
.
2017
;
9
(
1
):
47
-
55
.
32.
Klamer
SE
,
Dorland
YL
,
Kleijer
M
, et al
.
TGFBI expressed by bone marrow niche cells and hematopoietic stem and progenitor cells regulates hematopoiesis
.
Stem Cell Dev
.
2018
;
27
(
21
):
1494
-
1506
.
You do not currently have access to this content.
Sign in via your Institution