• Mice expressing nonpolymerizable fibrinogen are protected against venous thrombosis and have suppressed arterial thrombosis.

  • Selective prevention of fibrin polymerization had minimal influence on hemostasis.

Abstract

Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga−/−) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen–platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga−/− mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.

1.
Wendelboe
AM
,
Raskob
GE
.
Global burden of thrombosis: epidemiologic aspects
.
Circ Res
.
2016
;
118
(
9
):
1340
-
1347
.
2.
Ahmad
FB
,
Anderson
RN
.
The leading causes of death in the US for 2020
.
JAMA
.
2021
;
325
(
18
):
1829
-
1830
.
3.
Halimeh
S
,
Male
C
,
Nowak-Goettl
U
.
New anticoagulants in neonates, children, and adolescents
.
Hamostaseologie
.
2022
;
42
(
2
):
123
-
130
.
4.
Shaydakov
ME
,
Ting
W
,
Sadek
M
, et al
.
Review of the current evidence for topical treatment for venous leg ulcers
.
J Vasc Surg Venous Lymphat Disord
.
2022
;
10
(
1
):
241
-
247.e15
.
5.
Amirtabar
A
,
Vazquez
SR
,
Saunders
J
,
Witt
DM
.
Antiplatelet therapy indication in patients also prescribed direct oral anticoagulants
.
J Thromb Thrombolysis
.
2023
;
55
(
1
):
185
-
188
.
6.
Heit
JA
.
Epidemiology of venous thromboembolism
.
Nat Rev Cardiol
.
2015
;
12
(
8
):
464
-
474
.
7.
Chernysh
IN
,
Nagaswami
C
,
Kosolapova
S
, et al
.
The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli
.
Sci Rep
.
2020
;
10
(
1
):
5112
.
8.
Machlus
KR
,
Cardenas
JC
,
Church
FC
,
Wolberg
AS
.
Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice
.
Blood
.
2011
;
117
(
18
):
4953
-
4963
.
9.
Wolberg
AS
.
Thrombin generation and fibrin clot structure
.
Blood Rev
.
2007
;
21
(
3
):
131
-
142
.
10.
Collet
JP
,
Park
D
,
Lesty
C
, et al
.
Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy
.
Arterioscler Thromb Vasc Biol
.
2000
;
20
(
5
):
1354
-
1361
.
11.
Kim
PY
,
Stewart
RJ
,
Lipson
SM
,
Nesheim
ME
.
The relative kinetics of clotting and lysis provide a biochemical rationale for the correlation between elevated fibrinogen and cardiovascular disease
.
J Thromb Haemost
.
2007
;
5
(
6
):
1250
-
1256
.
12.
Aleman
MM
,
Byrnes
JR
,
Wang
JG
, et al
.
Factor XIII activity mediates red blood cell retention in venous thrombi
.
J Clin Invest
.
2014
;
124
(
8
):
3590
-
3600
.
13.
Byrnes
JR
,
Duval
C
,
Wang
Y
, et al
.
Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin alpha-chain crosslinking
.
Blood
.
2015
;
126
(
16
):
1940
-
1948
.
14.
Hur
WS
,
Paul
DS
,
Bouck
EG
, et al
.
Hypofibrinogenemia with preserved hemostasis and protection from thrombosis in mice with an Fga truncation mutation
.
Blood
.
2022
;
139
(
9
):
1374
-
1388
.
15.
Wilhelmsen
L
,
Svardsudd
K
,
Korsan-Bengtsen
K
,
Larsson
B
,
Welin
L
,
Tibblin
G
.
Fibrinogen as a risk factor for stroke and myocardial infarction
.
N Engl J Med
.
1984
;
311
(
8
):
501
-
505
.
16.
Fibrinogen Studies Collaboration
,
Danesh
J
,
Lewington
S
, et al
.
Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis
.
JAMA
.
2005
;
294
(
14
):
1799
-
1809
.
17.
Kannel
WB
,
Wolf
PA
,
Castelli
WP
,
D'Agostino
RB
.
Fibrinogen and risk of cardiovascular disease. The Framingham Study
.
JAMA
.
1987
;
258
(
9
):
1183
-
1186
.
18.
Prasad
JM
,
Gorkun
OV
,
Raghu
H
, et al
.
Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense
.
Blood
.
2015
;
126
(
17
):
2047
-
2058
.
19.
Everse
SJ
,
Spraggon
G
,
Veerapandian
L
,
Doolittle
RF
.
Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide
.
Biochemistry
.
1999
;
38
(
10
):
2941
-
2946
.
20.
Suh
TT
,
Holmback
K
,
Jensen
NJ
, et al
.
Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice
.
Genes Dev
.
1995
;
9
(
16
):
2020
-
2033
.
21.
Mwiza
JMN
,
Lee
RH
,
Paul
DS
, et al
.
Both G protein-coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice
.
Blood
.
2022
;
139
(
21
):
3194
-
3203
.
22.
Lee
RH
,
Kawano
T
,
Grover
SP
, et al
.
Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability
.
J Thromb Haemost
.
2022
;
20
(
2
):
422
-
433
.
23.
Kawano
T
,
Hisada
Y
,
Grover
SP
, et al
.
Decreased platelet reactivity and function in a mouse model of human pancreatic cancer
.
Thromb Haemost
.
2023
;
123
(
5
):
501
-
509
.
24.
Paul
DS
,
Bergmeier
W
.
Novel mouse model for studying hemostatic function of human platelets
.
Arterioscler Thromb Vasc Biol
.
2020
;
40
(
8
):
1891
-
1904
.
25.
Bugge
TH
,
Kombrinck
KW
,
Flick
MJ
,
Daugherty
CC
,
Danton
MJ
,
Degen
JL
.
Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency
.
Cell
.
1996
;
87
(
4
):
709
-
719
.
26.
Ni
H
,
Denis
CV
,
Subbarao
S
, et al
.
Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen
.
J Clin Invest
.
2000
;
106
(
3
):
385
-
392
.
27.
Yang
H
,
Reheman
A
,
Chen
P
, et al
.
Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo
.
J Thromb Haemost
.
2006
;
4
(
10
):
2230
-
2237
.
28.
Reheman
A
,
Yang
H
,
Zhu
G
, et al
.
Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor
.
Blood
.
2009
;
113
(
8
):
1809
-
1817
.
29.
Miszta
A
,
Kopec
AK
,
Pant
A
, et al
.
A high-fat diet delays plasmin generation in a thrombomodulin-dependent manner in mice
.
Blood
.
2020
;
135
(
19
):
1704
-
1717
.
30.
Getz
TM
,
Piatt
R
,
Petrich
BG
,
Monroe
D
,
Mackman
N
,
Bergmeier
W
.
Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition
.
J Thromb Haemost
.
2015
;
13
(
3
):
417
-
425
.
31.
Soria
J
,
Mirshahi
S
,
Mirshahi
SQ
, et al
.
Fibrinogen alphaC domain: its importance in physiopathology
.
Res Pract Thromb Haemost
.
2019
;
3
(
2
):
173
-
183
.
32.
Aleman
MM
,
Walton
BL
,
Byrnes
JR
, et al
.
Elevated prothrombin promotes venous, but not arterial, thrombosis in mice
.
Arterioscler Thromb Vasc Biol
.
2013
;
33
(
8
):
1829
-
1836
.
33.
Wolberg
AS
,
Aleman
MM
.
Influence of cellular and plasma procoagulant activity on the fibrin network
.
Thromb Res
.
2010
;
125
(
suppl 1
):
S35
-
37
.
34.
Tziomalos
K
,
Vakalopoulou
S
,
Perifanis
V
,
Garipidou
V
.
Treatment of congenital fibrinogen deficiency: overview and recent findings
.
Vasc Health Risk Manag
.
2009
;
5
:
843
-
848
.
35.
Wufsus
AR
,
Rana
K
,
Brown
A
,
Dorgan
JR
,
Liberatore
MW
,
Neeves
KB
.
Elastic behavior and platelet retraction in low- and high-density fibrin gels
.
Biophys J
.
2015
;
108
(
1
):
173
-
183
.
36.
Skaistis
J
,
Tagami
T
.
Risk of fatal bleeding in episodes of major bleeding with new oral anticoagulants and vitamin K antagonists: a systematic review and meta-analysis
.
PLoS One
.
2015
;
10
(
9
):
e0137444
.
37.
Fang
MC
,
Go
AS
,
Hylek
EM
, et al
.
Age and the risk of warfarin-associated hemorrhage: the anticoagulation and risk factors in atrial fibrillation study
.
J Am Geriatr Soc
.
2006
;
54
(
8
):
1231
-
1236
.
38.
Sanger
F
,
Nicklen
S
,
Coulson
AR
.
DNA sequencing with chain-terminating inhibitors
.
Proc Natl Acad Sci U S A
.
1977
;
74
(
12
):
5463
-
5467
.
39.
Flood
VH
,
Al-Mondhiry
HA
,
Farrell
DH
.
The fibrinogen Aalpha R16C mutation results in fibrinolytic resistance
.
Br J Haematol
.
2006
;
134
(
2
):
220
-
226
.
40.
Jung
JH
,
Tantry
US
,
Gurbel
PA
,
Jeong
YH
.
Current antiplatelet treatment strategy in patients with diabetes mellitus
.
Diabetes Metab J
.
2015
;
39
(
2
):
95
-
113
.
41.
Puccini
M
,
Rauch
C
,
Jakobs
K
, et al
.
Being overweight or obese is associated with an increased platelet reactivity despite dual antiplatelet therapy with aspirin and clopidogrel
.
Cardiovasc Drugs Ther
.
2023
;
37
(
4
):
833
-
837
.
You do not currently have access to this content.
Sign in via your Institution