• Mechanism by which miRNAs regulate hemoglobin switching.

  • Adult-specific let-7 miRNAs inhibit the BCL11A repressor HIC2.

Abstract

The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (β-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A–mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA–mediated inhibitory pathway (let-7HIC2BCL11AHBG).

1.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e17
.
2.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet
.
2018
;
50
(
4
):
498
-
503
.
3.
Psatha
N
,
Reik
A
,
Phelps
S
, et al
.
Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major
.
Mol Ther Methods Clin Dev
.
2018
;
10
:
313
-
326
.
4.
Wu
Y
,
Zeng
J
,
Roscoe
BP
, et al
.
Highly efficient therapeutic gene editing of human hematopoietic stem cells
.
Nat Med
.
2019
;
25
(
5
):
776
-
783
.
5.
Zeng
J
,
Wu
Y
,
Ren
C
, et al
.
Therapeutic base editing of human hematopoietic stem cells
.
Nat Med
.
2020
;
26
(
4
):
535
-
541
.
6.
Psatha
N
,
Georgakopoulou
A
,
Li
C
, et al
.
Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo
.
Blood
.
2021
;
138
(
17
):
1540
-
1553
.
7.
Liu
B
,
Brendel
C
,
Vinjamur
DS
, et al
.
Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies
.
Mol Ther
.
2022
;
30
(
8
):
2693
-
2708
.
8.
Fu
B
,
Liao
J
,
Chen
S
, et al
.
CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia
.
Nat Med
.
2022
;
28
(
8
):
1573
-
1580
.
9.
Liao
J
,
Chen
S
,
Hsiao
S
, et al
.
Therapeutic adenine base editing of human hematopoietic stem cells
.
Nat Commun
.
2023
;
14
(
1
):
207
.
10.
Xu
J
,
Shao
Z
,
Glass
K
, et al
.
Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis
.
Dev Cell
.
2012
;
23
(
4
):
796
-
811
.
11.
Huang
P
,
Keller
CA
,
Giardine
B
, et al
.
Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element
.
Genes Dev
.
2017
;
31
(
16
):
1704
-
1713
.
12.
Lalonde
S
,
Stone
OA
,
Lessard
S
, et al
.
Frameshift indels introduced by genome editing can lead to in-frame exon skipping
.
PLoS One
.
2017
;
12
(
6
):
e0178700
.
13.
Khandros
E
,
Huang
P
,
Peslak
SA
, et al
.
Understanding heterogeneity of fetal hemoglobin induction through comparative analysis of F and A erythroblasts
.
Blood
.
2020
;
135
(
22
):
1957
-
1968
.
14.
Huang
P
,
Peslak
SA
,
Ren
R
, et al
.
HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription
.
Nat Genet
.
2022
;
54
(
9
):
1417
-
1426
.
15.
Lessard
S
,
Beaudoin
M
,
Orkin
SH
,
Bauer
DE
,
Lettre
G
.
14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts
.
Hum Mol Genet
.
2018
;
27
(
8
):
1411
-
1420
.
16.
Rehfeld
F
,
Rohde
AM
,
Nguyen
DTT
,
Wulczyn
FG
.
Lin28 and let-7: ancient milestones on the road from pluripotency to neurogenesis
.
Cell Tissue Res
.
2015
;
359
(
1
):
145
-
160
.
17.
Lee
YT
,
de Vasconcellos
JF
,
Yuan
J
, et al
.
LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo
.
Blood
.
2013
;
122
(
6
):
1034
-
1041
.
18.
de Vasconcellos
JF
,
Byrnes
C
,
Lee
YT
, et al
.
Tough decoy targeting of predominant let-7 miRNA species in adult human hematopoietic cells
.
J Transl Med
.
2017
;
15
(
1
):
169
.
19.
Basak
A
,
Munschauer
M
,
Lareau
CA
, et al
.
Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation
.
Nat Genet
.
2020
;
52
(
2
):
138
-
145
.
20.
Kurita
R
,
Suda
N
,
Sudo
K
, et al
.
Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells
.
PLoS One
.
2013
;
8
(
3
):
e59890
.
21.
Chen
Y
,
Wang
X
.
miRDB: an online database for prediction of functional microRNA targets
.
Nucleic Acids Res
.
2020
;
48
(
D1
):
D127
-
D131
.
22.
Zhu
H
,
Shyh-Chang
N
,
Segrè
AV
, et al
.
The Lin28/let-7 axis regulates glucose metabolism
.
Cell
.
2011
;
147
(
1
):
81
-
94
.
23.
Kavakiotis
I
,
Alexiou
A
,
Tastsoglou
S
,
Vlachos
IS
,
Hatzigeorgiou
AG
.
DIANA-miTED: a microRNA tissue expression database
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D1055
-
D1061
.
24.
Haraguchi
T
,
Ozaki
Y
,
Iba
H
.
Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells
.
Nucleic Acids Res
.
2009
;
37
(
6
). e43–e43.
25.
de Vasconcellos
JF
,
Lee
YT
,
Byrnes
C
,
Tumburu
L
,
Rabel
A
,
Miller
JL
.
HMGA2 moderately increases fetal hemoglobin expression in human adult erythroblasts
.
PLoS One
.
2016
;
11
(
11
):
e0166928
.
26.
McIntosh
BE
,
Brown
ME
,
Duffin
BM
, et al
.
B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells
.
Stem Cell Rep
.
2015
;
4
(
2
):
171
-
180
.
27.
Fiorini
C
,
Abdulhay
NJ
,
McFarland
SK
, et al
.
Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice
.
Am J Hematol
.
2017
;
92
(
9
):
E513
-
E519
.
28.
Dykes
IM
,
van Bueren
KL
,
Scambler
PJ
.
HIC2 regulates isoform switching during maturation of the cardiovascular system
.
J Mol Cell Cardiol
.
2018
;
114
:
29
-
37
.
29.
Kuppusamy
KT
,
Jones
DC
,
Sperber
H
, et al
.
Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
21
):
E2785
-
E2794
.
30.
Azzouzi
I
,
Moest
H
,
Winkler
J
, et al
.
MicroRNA-96 directly inhibits γ-globin expression in human erythropoiesis
.
PLoS One
.
2011
;
6
(
7
):
e22838
.
31.
Sankaran
VG
,
Menne
TF
,
Šćepanović
D
, et al
.
MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
4
):
1519
-
1524
.
32.
Lulli
V
,
Romania
P
,
Morsilli
O
, et al
.
MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A
.
PLoS One
.
2013
;
8
(
4
):
e60436
.
33.
Li
H
,
Lin
R
,
Li
H
, et al
.
MicroRNA-92a-3p-mediated inhibition of BCL11A upregulates γ-globin expression and inhibits oxidative stress and apoptosis in erythroid precursor cells
.
Hematology
.
2022
;
27
(
1
):
1152
-
1162
.
34.
Naeli
P
,
Winter
T
,
Hackett
AP
,
Alboushi
L
,
Jafarnejad
SM
.
The intricate balance between microRNA-induced mRNA decay and translational repression
.
FEBS J
.
2023
;
290
(
10
):
2508
-
2524
.
You do not currently have access to this content.
Sign in via your Institution