• Loss of the 9p21-syntenic locus in mice causes MDS/MPN–like disease with BM fibrosis and/or ossification.

  • The disease is driven by the aberrant BM niche producing less CXCL12 and more CXCL13 and osteopontin.

The chromosome 9p21 locus comprises several tumor suppressor genes including MTAP, CDKN2A, and CDKN2B, and its homo- or heterozygous deletion is associated with reduced survival in multiple cancer types. We report that mice with germ line monoallelic deletion or induced biallelic deletion of the 9p21-syntenic locus (9p21s) developed a fatal myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN)-like disease associated with aberrant trabecular bone formation and/or fibrosis in the bone marrow (BM). Reciprocal BM transfers and conditional targeting of 9p21s suggested that the disease originates in the BM stroma. Single-cell analysis of 9p21s-deficient BM stroma revealed the expansion of chondrocyte and osteogenic precursors, reflected in increased osteogenic differentiation in vitro. It also showed reduced expression of factors maintaining hematopoietic stem/progenitor cells, including Cxcl12. Accordingly, 9p21s-deficient mice showed reduced levels of circulating Cxcl12 and concomitant upregulation of the profibrotic chemokine Cxcl13 and the osteogenesis- and fibrosis-related multifunctional glycoprotein osteopontin/Spp1. Our study highlights the potential of mutations in the BM microenvironment to drive MDS/MPN–like disease.

1.
Abelson
S
,
Collord
G
,
Ng
SWK
, et al
.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
2.
Corces-Zimmerman
MR
,
Majeti
R
.
Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis
.
Leukemia
.
2014
;
28
(
12
):
2276
-
2282
.
3.
Galan-Diez
M
,
Cuesta-Dominguez
A
,
Kousteni
S
.
The bone marrow microenvironment in health and myeloid malignancy
.
Cold Spring Harb Perspect Med
.
2018
;
8
(
7
):
a031328
.
4.
Witkowski
MT
,
Kousteni
S
,
Aifantis
I
.
Mapping and targeting of the leukemic microenvironment
.
J Exp Med
.
2020
;
217
(
2
):
e20190589
.
5.
Della Porta
MG
,
Malcovati
L
,
Boveri
E
, et al
.
Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes
.
J Clin Oncol
.
2009
;
27
(
5
):
754
-
762
.
6.
Kroger
N
,
Zabelina
T
,
van Biezen
A
, et al
.
Allogeneic stem cell transplantation for myelodysplastic syndromes with bone marrow fibrosis
.
Haematologica
.
2011
;
96
(
2
):
291
-
297
.
7.
Ramos
F
,
Robledo
C
,
Izquierdo-Garcia
FM
, et al
.
Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis
.
Oncotarget
.
2016
;
7
(
21
):
30492
-
30503
.
8.
Duarte
FB
,
Barbosa
MC
,
Jesus Dos Santos
TE
, et al
.
Bone marrow fibrosis at diagnosis is associated with TP53 overexpression and adverse prognosis in low-risk myelodysplastic syndrome
.
Br J Haematol
.
2018
;
181
(
4
):
547
-
549
.
9.
Aguiar
RC
,
Sill
H
,
Goldman
JM
,
Cross
NC
.
The commonly deleted region at 9p21-22 in lymphoblastic leukemias spans at least 400 kb and includes p16 but not p15 or the IFN gene cluster
.
Leukemia
.
1997
;
11
(
2
):
233
-
238
.
10.
Holland
EA
,
Beaton
SC
,
Edwards
BG
,
Kefford
RF
,
Mann
GJ
.
Loss of heterozygosity and homozygous deletions on 9p21-22 in melanoma
.
Oncogene
.
1994
;
9
(
5
):
1361
-
1365
.
11.
Krasinskas
AM
,
Bartlett
DL
,
Cieply
K
,
Dacic
S
.
CDKN2A and MTAP deletions in peritoneal mesotheliomas are correlated with loss of p16 protein expression and poor survival
.
Mod Pathol
.
2010
;
23
(
4
):
531
-
538
.
12.
Crespo
I
,
Vital
AL
,
Nieto
AB
, et al
.
Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays
.
J Mol Diagn
.
2011
;
13
(
6
):
634
-
647
.
13.
Bonelli
P
,
Tuccillo
FM
,
Borrelli
A
,
Schiattarella
A
,
Buonaguro
FM
.
CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity
.
Biomed Res Int
.
2014
;
2014
:
361020
.
14.
Pasmant
E
,
Sabbagh
A
,
Vidaud
M
,
Bieche
I
.
ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS
.
FASEB J
.
2011
;
25
(
2
):
444
-
448
.
15.
Behrmann
I
,
Wallner
S
,
Komyod
W
, et al
.
Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma
.
Am J Pathol
.
2003
;
163
(
2
):
683
-
690
.
16.
Christopher
SA
,
Diegelman
P
,
Porter
CW
,
Kruger
WD
.
Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line
.
Cancer Res
.
2002
;
62
(
22
):
6639
-
6644
.
17.
Kim
J
,
Kim
MA
,
Min
SY
,
Jee
CD
,
Lee
HE
,
Kim
WH
.
Downregulation of methylthioadenosin phosphorylase by homozygous deletion in gastric carcinoma
.
Genes Chromosomes Cancer
.
2011
;
50
(
6
):
421
-
433
.
18.
Kadariya
Y
,
Tang
B
,
Wang
L
, et al
.
Germline mutations in Mtap cooperate with Myc to accelerate tumorigenesis in mice
.
PLoS One
.
2013
;
8
(
6
):
e67635
.
19.
Kadariya
Y
,
Yin
B
,
Tang
B
, et al
.
Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma
.
Cancer Res
.
2009
;
69
(
14
):
5961
-
5969
.
20.
Sawai
CM
,
Babovic
S
,
Upadhaya
S
, et al
.
Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals
.
Immunity
.
2016
;
45
(
3
):
597
-
609
.
21.
Franceschini
N
,
Gaeta
R
,
Krimpenfort
P
, et al
.
A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target
.
Lab Invest
.
2022
;
102
(
4
):
391
-
400
.
22.
Klein
U
,
Lia
M
,
Crespo
M
, et al
.
The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia
.
Cancer Cell
.
2010
;
17
(
1
):
28
-
40
.
23.
Han
G
,
Yang
G
,
Hao
D
, et al
.
9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy
.
Nat Commun
.
2021
;
12
(
1
):
5606
.
24.
Baryawno
N
,
Przybylski
D
,
Kowalczyk
MS
, et al
.
A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia
.
Cell
.
2019
;
177
(
7
):
1915
-
1932.e16
.
25.
Baccin
C
,
Al-Sabah
J
,
Velten
L
, et al
.
Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization
.
Nat Cell Biol
.
2020
;
22
(
1
):
38
-
48
.
26.
Feng
J
,
Pucella
JN
,
Jang
G
, et al
.
Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells
.
Immunity
.
2022
;
55
(
3
):
405
-
422.e11
.
27.
Hoshino
A
,
Ueha
S
,
Hanada
S
, et al
.
Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts
.
J Cell Sci
.
2013
;
126
(
pt 4
):
1032
-
1045
.
28.
Stoeckius
M
,
Hafemeister
C
,
Stephenson
W
, et al
.
Simultaneous epitope and transcriptome measurement in single cells
.
Nat Methods
.
2017
;
14
(
9
):
865
-
868
.
29.
Dolgalev
I
,
Tikhonova
AN
.
Connecting the dots: resolving the bone marrow niche heterogeneity
.
Front Cell Dev Biol
.
2021
;
9
:
622519
.
30.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
31.
Morrison
SJ
,
Scadden
DT
.
The bone marrow niche for haematopoietic stem cells
.
Nature
.
2014
;
505
(
7483
):
327
-
334
.
32.
Chen
EY
,
Tan
CM
,
Kou
Y
, et al
.
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
.
BMC Bioinformatics
.
2013
;
14
:
128
.
33.
Efremova
M
,
Vento-Tormo
M
,
Teichmann
SA
,
Vento-Tormo
R
.
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
.
Nat Protoc
.
2020
;
15
(
4
):
1484
-
1506
.
34.
Guidi
N
,
Sacma
M
,
Standker
L
, et al
.
Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells (vol 36, pg 840, 2017)
.
EMBO J
.
2017
;
36
(
10
):
1463
.
35.
Ruberti
S
,
Bianchi
E
,
Guglielmelli
P
, et al
.
Involvement of MAF/SPP1 axis in the development of bone marrow fibrosis in PMF patients
.
Leukemia
.
2018
;
32
(
2
):
438
-
449
.
36.
Bradaschia-Correa
V
,
Josephson
AM
,
Mehta
D
, et al
.
The selective serotonin reuptake inhibitor fluoxetine directly inhibits osteoblast differentiation and mineralization during fracture healing in mice
.
J Bone Miner Res
.
2017
;
32
(
4
):
821
-
833
.
37.
Ansel
KM
,
Harris
RBS
,
Cyster
JG
.
CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity
.
Immunity
.
2002
;
16
(
1
):
67
-
76
.
38.
Pan
Z
,
Zhu
T
,
Liu
Y
,
Zhang
N
.
Role of the CXCL13/CXCR5 axis in autoimmune diseases
.
Front Immunol
.
2022
;
13
:
850998
.
39.
Greenbaum
A
,
Hsu
YMS
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is. required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
40.
Lucioni
M
,
Novara
F
,
Fiandrino
G
, et al
.
Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion
.
Blood
.
2011
;
118
(
17
):
4591
-
4594
.
41.
Novara
F
,
Beri
S
,
Bernardo
ME
, et al
.
Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood
.
Hum Genet
.
2009
;
126
(
4
):
511
-
520
.
42.
Burns
JS
,
Harkness
L
,
Aldahmash
A
,
Gautier
L
,
Kassem
M
.
Chromosome copy number variation in telomerized human bone marrow stromal cells; insights for monitoring safe ex-vivo expansion of adult stem cells
.
Stem Cell Res
.
2017
;
25
:
6
-
17
.
43.
Scruggs
AM
,
Koh
HB
,
Tripathi
P
,
Leeper
NJ
,
White
ES
,
Huang
SK
.
Loss of CDKN2B promotes fibrosis via increased fibroblast differentiation rather than proliferation
.
Am J Respir Cell Mol Biol
.
2018
;
59
(
2
):
200
-
214
.
44.
Lv
FQ
,
Li
N
,
Kong
M
, et al
.
CDKN2a/p16 antagonizes hepatic stellate cell activation and liver fibrosis by modulating ROS levels
.
Front Cell Dev Biol
.
2020
;
8
:
176
.
45.
Czech
B
,
Dettmer
K
,
Valletta
D
, et al
.
Expression and function of methylthioadenosine phosphorylase in chronic liver disease
.
PLoS One
.
2013
;
8
(
12
):
e80703
.
46.
Yang
JJ
,
Yang
Y
,
Zhang
C
,
Li
J
,
Yang
Y
.
Epigenetic silencing of LncRNA ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway
.
J Cell Mol Med
.
2020
;
24
(
4
):
2677
-
2687
.
47.
Lorenz
S
,
Baroy
T
,
Sun
JC
, et al
.
Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations
.
Oncotarget
.
2016
;
7
(
5
):
5273
-
5288
.
48.
Mohseny
AB
,
Szuhai
K
,
Romeo
S
, et al
.
Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2
.
J Pathol
.
2009
;
219
(
3
):
294
-
305
.
49.
Kuter
DJ
,
Bain
B
,
Mufti
G
,
Bagg
A
,
Hasserjian
RP
.
Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres
.
Br J Haematol
.
2007
;
139
(
3
):
351
-
362
.
50.
Fu
B
,
Jaso
JM
,
Sargent
RL
, et al
.
Bone marrow fibrosis in patients with primary myelodysplastic syndromes has prognostic value using current therapies and new risk stratification systems
.
Mod Pathol
.
2014
;
27
(
5
):
681
-
689
.
51.
Walkley
CR
,
Olsen
GH
,
Dworkin
S
, et al
.
A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
.
Cell
.
2007
;
129
(
6
):
1097
-
1110
.
52.
Walkley
CR
,
Shea
JM
,
Sims
NA
,
Purton
LE
,
Orkin
SH
.
Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
.
Cell
.
2007
;
129
(
6
):
1081
-
1095
.
53.
Raaijmakers
MH
,
Mukherjee
S
,
Guo
S
, et al
.
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
.
Nature
.
2010
;
464
(
7290
):
852
-
857
.
54.
Kode
A
,
Manavalan
JS
,
Mosialou
I
, et al
.
Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts
.
Nature
.
2014
;
506
(
7487
):
240
-
244
.
55.
Dong
L
,
Yu
WM
,
Zheng
H
, et al
.
Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment
.
Nature
.
2016
;
539
(
7628
):
304
-
308
.
56.
Decker
M
,
Martinez-Morentin
L
,
Wang
GN
, et al
.
Leptin-receptor-expressing bon2.marrow stromal cells are myofibroblasts in primary myelofibrosis
.
Nat Cell Biol
.
2017
;
19
(
6
):
677
-
688
.
57.
Weidner
H
,
Rauner
M
,
Trautmann
F
, et al
.
Myelodysplastic syndromes and bone loss in mice and men
.
Leukemia
.
2017
;
31
(
4
):
1003
-
1007
.
58.
Kim
PG
,
Niroula
A
,
Shkolnik
V
, et al
.
Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis
.
J Exp Med
.
2021
;
218
(
12
):
e20211872
.
59.
Spampinato
M
,
Giallongo
C
,
Romano
A
, et al
.
Focus on osteosclerotic progression in primary myelofibrosis
.
Biomolecules
.
2021
;
11
(
1
):
122
.
You do not currently have access to this content.
Sign in via your Institution