• JAK2 V617F and Tpo induce dimerization of hTpoR in different dimeric conformations.

  • Modulation of hTpoR allows specific inhibition of JAK2 V617F–driven signaling.

The thrombopoietin receptor (TpoR) plays a central role in myeloproliferative neoplasms (MPNs). Mutations in JAK2, calreticulin, or TpoR itself drive the constitutive activation of TpoR and uncontrolled proliferation and differentiation of hematopoietic stem cells and progenitors. The JAK2 V617F mutation is responsible for most MPNs, and all driver mutants induce pathologic TpoR activation. Existing therapeutic strategies have focused on JAK2 kinase inhibitors that are unable to differentiate between the mutated MPN clone and healthy cells. Surprisingly, the targeting of TpoR itself has remained poorly explored despite its central role in pathology. Here, we performed a comprehensive characterization of human TpoR activation under physiological and pathological conditions, focusing on the JAK2 V617F mutant. Using a system of controlled dimerization of the transmembrane and cytosolic domains of TpoR, we discovered that human TpoR (hTpoR) adopts different dimeric conformations upon Tpo-induced vs JAK2 V617F–mediated activation. We identified the amino acids and specific dimeric conformation of hTpoR responsible for activation in complex with JAK2 V617F and confirmed our findings in the full-length receptor context in hematopoietic cell lines and primary bone marrow cells. Remarkably, we found that the modulation of hTpoR conformations by point mutations allowed for specific inhibition of JAK2 V617F–driven activation without affecting Tpo-induced signaling. Our results demonstrate that modulation of the hTpoR conformation is a viable therapeutic strategy for JAK2 V617F–positive MPNs and set the path for novel drug development by identifying precise residues of hTpoR involved in JAK2 V617F–specific activation.

1.
de Sauvage
FJ
,
Carver-Moore
K
,
Luoh
SM
, et al
.
Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin
.
J Exp Med
.
1996
;
183
(
2
):
651
-
656
.
2.
Gurney
AL
,
Carver-Moore
K
,
de Sauvage
FJ
,
Moore
MW
.
Thrombocytopenia in c-MPL-deficient mice
.
Science
.
1994
;
265
(
5177
):
1445
-
1447
.
3.
Fox
N
,
Priestley
G
,
Papayannopoulou
T
,
Kaushansky
K
.
Thrombopoietin expands hematopoietic stem cells after transplantation
.
J Clin Invest
.
2002
;
110
(
3
):
389
-
394
.
4.
Qian
H
,
Buza-Vidas
N
,
Hyland
CD
, et al
.
Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells
.
Cell Stem Cell
.
2007
;
1
(
6
):
671
-
684
.
5.
Solar
GP
,
Kerr
WG
,
Zeigler
FC
, et al
.
Role of c-MPL in early hematopoiesis
.
Blood
.
1998
;
92
(
1
):
4
-
10
.
6.
Yoshihara
H
,
Arai
F
,
Hosokawa
K
, et al
.
Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
.
Cell Stem Cell
.
2007
;
1
(
6
):
685
-
697
.
7.
Wilmes
S
,
Hafer
M
,
Vuorio
J
, et al
.
Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations
.
Science
.
2020
;
367
(
6478
):
643
-
652
.
8.
Alexander
WS
,
Metcalf
D
,
Dunn
AR
.
Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity
.
EMBO J
.
1995
;
14
(
22
):
5569
-
5578
.
9.
Staerk
J
,
Defour
JP
,
Pecquet
C
, et al
.
Orientation-specific signalling by thrombopoietin receptor dimers
.
EMBO J
.
2011
;
30
(
21
):
4398
-
4413
.
10.
Feese
MD
,
Tamada
T
,
Kato
Y
, et al
.
Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
7
):
1816
-
1821
.
11.
Marty
C
,
Pecquet
C
,
Nivarthi
H
, et al
.
Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis
.
Blood
.
2016
;
127
(
10
):
1317
-
1324
.
12.
Pecquet
C
,
Staerk
J
,
Chaligné
R
, et al
.
Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor
.
Blood
.
2010
;
115
(
5
):
1037
-
1048
.
13.
Sangkhae
V
,
Etheridge
SL
,
Kaushansky
K
,
Hitchcock
IS
.
The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm
.
Blood
.
2014
;
124
(
26
):
3956
-
3963
.
14.
Ballmaier
M
,
Germeshausen
M
,
Schulze
H
, et al
.
c-MPL mutations are the cause of congenital amegakaryocytic thrombocytopenia
.
Blood
.
2001
;
97
(
1
):
139
-
146
.
15.
Matthews
EE
,
Thévenin
D
,
Rogers
JM
, et al
.
Thrombopoietin receptor activation: transmembrane helix dimerization, rotation, and allosteric modulation
.
FASEB J
.
2011
;
25
(
7
):
2234
-
2244
.
16.
Levy
G
,
Carillo
S
,
Papoular
B
, et al
.
MPL mutations in essential thrombocythemia uncover a common path of activation with eltrombopag dependent on W491
.
Blood
.
2020
;
135
(
12
):
948
-
953
.
17.
Mohan
K
,
Ueda
G
,
Kim
AR
, et al
.
Topological control of cytokine receptor signaling induces differential effects in hematopoiesis
.
Science
.
2019
;
364
(
6442
):
eaav7532
.
18.
Moraga
I
,
Wernig
G
,
Wilmes
S
, et al
.
Tuning cytokine receptor signaling by re-orienting dimer geometry with surrogate ligands
.
Cell
.
2015
;
160
(
6
):
1196
-
1208
.
19.
Cui
L
,
Moraga
I
,
Lerbs
T
, et al
.
Tuning MPL signaling to influence hematopoietic stem cell differentiation and inhibit essential thrombocythemia progenitors
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
2
):
e2017849118
.
20.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
21.
James
C
,
Ugo
V
,
Le Couédic
J-P
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
22.
Jelinek
J
,
Oki
Y
,
Gharibyan
V
, et al
.
JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia
.
Blood
.
2005
;
106
(
10
):
3370
-
3373
.
23.
Levine
RL
,
Loriaux
M
,
Huntly
BJ
, et al
.
The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia
.
Blood
.
2005
;
106
(
10
):
3377
-
3379
.
24.
Leroy
E
,
Balligand
T
,
Constantinescu
SN
.
JAK2 V617F dimerizes homodimeric cytokine receptors cytosolic domains by requiring pseudokinase domain residues that promote JAK2 dimerization and oncogenic activity [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
50
.
25.
Leroy
E
,
Constantinescu
SN
.
Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile Janus kinase inhibition
.
Leukemia
.
2017
;
31
(
12
):
2853-1038
.
26.
Maslah
N
,
Roux
B
,
Kaci
N
, et al
.
JAK inhibition mediates clonal selection of ras pathway mutations in myeloproliferative neoplasms [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
795
-
796
.
27.
Ferrao
RD
,
Wallweber
HJ
,
Lupardus
PJ
.
Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation
.
Elife
.
2018
;
7
:
e38089
.
28.
Perrin
F
,
Papadopoulos
N
,
Suelves
N
, et al
.
Dimeric transmembrane orientations of APP/C99 regulate γ-secretase processing line impacting signaling and oligomerization
.
iScience
.
2020
;
23
(
12
):
101887
.
29.
Seubert
N
,
Royer
Y
,
Staerk
J
, et al
.
Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer
.
Mol Cell
.
2003
;
12
(
5
):
1239
-
1250
.
30.
Defour
JP
,
Chachoua
I
,
Pecquet
C
,
Constantinescu
SN
.
Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms
.
Leukemia
.
2016
;
30
(
5
):
1214
-
1216
.
31.
Staerk
J
,
Lacout
C
,
Sato
T
,
Smith
SO
,
Vainchenker
W
,
Constantinescu
SN
.
An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor
.
Blood
.
2006
;
107
(
5
):
1864
-
1871
.
32.
Jumper
J
,
Evans
R
,
Pritzel
A
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
-
589
.
33.
Leroy
E
,
Defour
JP
,
Sato
T
, et al
.
His499 regulates dimerization and prevents oncogenic activation by asparagine mutations of the human thrombopoietin receptor
.
J Biol Chem
.
2016
;
291
(
6
):
2974
-
2987
.
34.
Defour
JP
,
Leroy
E
,
Dass
S
, et al
.
Constitutive activation and oncogenicity are mediated by loss of helical structure at the cytosolic boundary of thrombopoietin receptor mutant dimers
.
Elife
.
2023
;
12
:
e81521
.
35.
Kim
S
,
Jeon
T-J
,
Oberai
A
,
Yang
D
,
Schmidt
JJ
,
Bowie
JU
.
Transmembrane glycine zippers: physiological and pathological roles in membrane proteins
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
40
):
14278
-
14283
.
36.
Pecquet
C
,
Diaconu
CC
,
Staerk
J
, et al
.
Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes
.
Blood
.
2012
;
119
(
20
):
4625
-
4635
.
37.
Murone
M
,
Carpenter
DA
,
de Sauvage
FJ
.
Hematopoietic deficiencies in c-mpl and TPO knockout mice
.
Stem Cell
.
1998
;
16
(
1
):
1
-
6
.
38.
Czech
J
,
Cordua
S
,
Weinbergerova
B
, et al
.
JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation
.
Leukemia
.
2019
;
33
(
4
):
995
-
1010
.
39.
Verger
E
,
Soret-Dulphy
J
,
Maslah
N
, et al
.
Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo
.
Blood Cancer J
.
2018
;
8
(
10
):
94
.
40.
Akada
H
,
Yan
D
,
Zou
H
,
Fiering
S
,
Hutchison
RE
,
Mohi
MG
.
Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease
.
Blood
.
2010
;
115
(
17
):
3589
-
3597
.
41.
Marty
C
,
Lacout
C
,
Martin
A
, et al
.
Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice
.
Blood
.
2010
;
116
(
5
):
783
-
787
.
42.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
43.
Balligand
T
,
Achouri
Y
,
Pecquet
C
, et al
.
Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development
.
Leukemia
.
2020
;
34
(
2
):
510
-
521
.
44.
Benlabiod
C
,
Cacemiro
MdC
,
Nédélec
A
, et al
.
Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN
.
Nat Commun
.
2020
;
11
(
1
):
4886
.
45.
Shide
K
,
Kameda
T
,
Kamiunten
A
, et al
.
Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis
.
Blood Cancer J
.
2019
;
9
(
4
):
42
.
46.
Rongvaux
A
,
Willinger
T
,
Takizawa
H
, et al
.
Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
6
):
2378
-
2383
.
47.
Defour
JP
,
Itaya
M
,
Gryshkova
V
, et al
.
Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
7
):
2540
-
2545
.
You do not currently have access to this content.
Sign in via your Institution