Immunomodulatory agents (IMiDs) are a cornerstone of treatment for patients with multiple myeloma. IMiDs are used in therapeutic combinations at all stages of disease and are approved as a single-agent maintenance treatment after autologous stem cell transplantation. However, patients become resistant to ongoing therapy over time and inevitably relapse. It is only in the last decade that the mechanism of IMiD action has been elucidated; through binding to the cereblon component of the CRL4CRBN E3 ubiquitin ligase, a set of neosubstrates is designated for degradation by the proteasome. In myeloma cells, this includes the zinc-finger B-cell transcription factors Ikaros and Aiolos, which, in turn, lead to decreased levels of IRF4 and c-MYC and cell death. As our knowledge of IMiD mechanism of action has advanced, the ability to study resistance mechanisms has also developed. This review explores the existing work on IMiD resistance and proposes areas of future research that may advance our understanding and management of this common clinical condition.

1.
Bird
SA
,
Boyd
K
.
Multiple myeloma: an overview of management
.
Palliat Care Soc Pract
.
2019
;
13
:
1178224219868235
.
2.
Davis
LN
,
Sherbenou
DW
.
Emerging therapeutic strategies to overcome drug resistance in multiple myeloma
.
Cancers
.
2021
;
13
(
7
):
1686
.
3.
Bianchi
G
,
Munshi
NC
.
Pathogenesis beyond the cancer clone(s) in multiple myeloma
.
Blood
.
2015
;
125
(
20
):
3049
-
3058
.
4.
Ria
R
,
Vacca
A
.
Bone marrow stromal cells-induced drug resistance in multiple myeloma
.
Int J Mol Sci
.
2020
;
21
(
2
):
613
.
5.
Pawlyn
C
,
Davies
FE
,
Kaiser
MF
, et al
.
Primary IMiD refractory myeloma; results from 3894 patients treated in the Phase III Myeloma XI Study
.
Blood
.
2016
;
128
(
22
):
1144
.
6.
Lecat
CSY
,
Taube
JB
,
Wilson
W
, et al
.
Defining unmet need following lenalidomide refractoriness: real-world evidence of outcomes in patients with multiple myeloma
.
Front Oncol
.
2021
;
11
:
703233
.
7.
Holstein
SA
,
McCarthy
PL
.
Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience
.
Drugs
.
2017
;
77
(
5
):
505
-
520
.
8.
Singhal
S
,
Mehta
J
,
Desikan
R
, et al
.
Antitumor activity of thalidomide in refractory multiple myeloma
.
N Engl J Med
.
1999
;
341
(
21
):
1565
-
1571
.
9.
Ito
T
,
Ando
H
,
Suzuki
T
, et al
.
Identification of a primary target of thalidomide teratogenicity
.
Science (New York, NY)
.
2010
;
327
(
5971
):
1345
-
1350
.
10.
Collins
I
,
Wang
H
,
Caldwell
JJ
,
Chopra
R
.
Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway
.
Biochem J
.
2017
;
474
(
7
):
1127
-
1147
.
11.
Kronke
J
,
Hurst
SN
,
Ebert
BL
.
Lenalidomide induces degradation of IKZF1 and IKZF3
.
OncoImmunology
.
2014
;
3
(
7
):
e941742
.
12.
Lu
G
,
Middleton
RE
,
Sun
H
, et al
.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
.
Science (New York, NY)
.
2014
;
343
(
6168
):
305
-
309
.
13.
Shaffer
AL
,
Emre
NCT
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
14.
Sievers
QL
,
Petzold
G
,
Bunker
RD
, et al
.
Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN
.
Science (New York, NY)
.
2018
;
362
(
6414
):
eaat0572
.
15.
An
J
,
Ponthier
CM
,
Sack
R
, et al
.
pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4(CRBN) ubiquitin ligase
.
Nat Commun
.
2017
;
8
:
15398
.
16.
Chung
D
,
Dellaire
G
.
The role of the COP9 signalosome and neddylation in DNA damage signaling and repair
.
Biomolecules
.
2015
;
5
(
4
):
2388
-
2416
.
17.
Eichner
R
,
Heider
M
,
Fernandez-Saiz
V
, et al
.
Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity
.
Nat Med
.
2016
;
22
(
7
):
735
-
743
.
18.
Heider
M
,
Eichner
R
,
Stroh
J
, et al
.
The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma
.
Mol Cell
.
2021
;
81
(
6
):
1170
-
1186.e10
.
19.
Kortum
KM
,
Zhu
YX
,
Shi
CX
,
Jedlowski
P
,
Stewart
AK
.
Cereblon binding molecules in multiple myeloma
.
Blood Rev
.
2015
;
29
(
5
):
329
-
334
.
20.
D'Souza
C
,
Prince
HM
,
Neeson
PJ
.
Understanding the role of T-cells in the antimyeloma effect of immunomodulatory drugs
.
Front Immunol
.
2021
;
12
:
632399
.
21.
Thakurta
A
,
Pierceall
WE
,
Amatangelo
MD
,
Flynt
E
,
Agarwal
A
.
Developing next generation immunomodulatory drugs and their combinations in multiple myeloma
.
Oncotarget
.
2021
;
12
(
15
):
1555
-
1563
.
22.
Dimopoulos
MA
,
Palumbo
A
,
Corradini
P
, et al
.
Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma
.
Blood
.
2016
;
128
(
4
):
497
-
503
.
23.
Richardson
PG
,
Schjesvold
F
,
Weisel
K
, et al
.
Pomalidomide, bortezomib, and dexamethasone at first relapse in lenalidomide-pretreated myeloma: a subanalysis of OPTIMISMM by clinical characteristics
.
Eur J Haematol
.
2022
;
108
(
1
):
73
-
83
.
24.
van de Donk
NWCJ
,
Popat
R
,
Larsen
J
, et al
.
First results of iberdomide (IBER; CC-220) in combination with dexamethasone (DEX) and daratumumab (DARA) or bortezomib (BORT) in patients with relapsed/refractory multiple myeloma (RRMM) [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
16
-
17
.
25.
Lonial
S
,
van de Donk
NW
,
Popat
R
, et al
.
First clinical (phase 1b/2a) study of iberdomide (CC-220; IBER), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM)
.
J Clin Oncol
.
2019
;
37
(
15
):
8006
.
26.
Richardson
PG
,
Trudel
S
,
Quach
H
, et al
.
Mezigdomide (CC-92480), a potent, novel cereblon E3 ligase modulator (CELMoD), combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): preliminary results from the Dose-Expansion Phase of the CC-92480-MM-001 tria [abstract]l
.
Blood
.
2022
;
140
(
suppl 1
):
1366
-
1368
.
27.
Lonial
S
,
Popat
R
,
Hulin
C
, et al
.
Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial
.
Lancet Haematol
.
2022
;
9
(
11
):
e822
-
e832
.
28.
Zhu
YX
,
Braggio
E
,
Shi
CX
, et al
.
Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide
.
Blood
.
2011
;
118
(
18
):
4771
-
4779
.
29.
Franssen
LE
,
Nijhof
IS
,
Couto
S
, et al
.
Cereblon loss and up-regulation of c-Myc are associated with lenalidomide resistance in multiple myeloma patients
.
Haematologica
.
2018
;
103
(
8
):
e368
-
e371
.
30.
Sperling
AS
,
Burgess
M
,
Keshishian
H
, et al
.
Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs
.
Blood
.
2019
;
134
(
2
):
160
-
170
.
31.
Asatsuma-Okumura
T
,
Ito
T
,
Handa
H
.
Molecular mechanisms of cereblon-based drugs
.
Pharmacol Ther
.
2019
;
202
:
132
-
139
.
32.
Carpio
C
,
Bouabdallah
R
,
Ysebaert
L
, et al
.
Avadomide monotherapy in relapsed/refractory DLBCL: safety, efficacy, and a predictive gene classifier
.
Blood
.
2020
;
135
(
13
):
996
-
1007
.
33.
Ioannou
N
,
Jain
K
,
Ramsay
AG
.
Immunomodulatory drugs for the treatment of B cell malignancies
.
Int J Mol Sci
.
2021
;
22
(
16
):
8572
.
34.
Churcher
I
.
Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones?
.
J Med Chem
.
2018
;
61
(
2
):
444
-
452
.
35.
Lopez-Girona
A
,
Mendy
D
,
Ito
T
, et al
.
Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide
.
Leukemia
.
2012
;
26
(
11
):
2326
-
2335
.
36.
Ocio
EM
,
Fernandez-Lazaro
D
,
San-Segundo
L
, et al
.
In vivo murine model of acquired resistance in myeloma reveals differential mechanisms for lenalidomide and pomalidomide in combination with dexamethasone
.
Leukemia
.
2015
;
29
(
3
):
705
-
714
.
37.
Liu
J
,
Song
T
,
Zhou
W
, et al
.
A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity
.
Leukemia
.
2019
;
33
(
1
):
171
-
180
.
38.
Sievers
QL
,
Gasser
JA
,
Cowley
GS
,
Fischer
ES
,
Ebert
BL
.
Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4(CRBN) activity
.
Blood
.
2018
;
132
(
12
):
1293
-
1303
.
39.
Shirasaki
R
,
Matthews
GM
,
Gandolfi
S
, et al
.
Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins
.
Cell Rep
.
2021
;
34
(
1
):
108532
.
40.
Skerget
S
,
Benard
B
,
Christofferson
A
, et al
.
A molecular analysis of cereblon-related immunomodulatory drug resistance in CoMMpass multiple myeloma patients [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
1754
.
41.
Kortum
KM
,
Mai
EK
,
Hanafiah
NH
, et al
.
Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes
.
Blood
.
2016
;
128
(
9
):
1226
-
1233
.
42.
Barrio
S
,
Munawar
U
,
Zhu
YX
, et al
.
IKZF1/3 and CRL4(CRBN) E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma
.
Haematologica
.
2020
;
105
(
5
):
e237
-
e241
.
43.
Gooding
S
,
Ansari-Pour
N
,
Towfic
F
, et al
.
Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma
.
Blood
.
2021
;
137
(
2
):
232
-
237
.
44.
Neri
P
,
Maity
R
,
Keats
JJ
, et al
.
Cereblon splicing of exon 10 mediates IMiDs resistance in multiple myeloma: clinical validation in the CoMMpass Trial
.
Blood
.
2016
;
128
(
22
):
120
.
45.
Haertle
L
,
Barrio
S
,
Munawar
U
, et al
.
Cereblon enhancer methylation and IMiD resistance in multiple myeloma
.
Blood
.
2021
;
138
(
18
):
1721
-
1726
.
46.
Dimopoulos
K
,
Sogaard Helbo
A
,
Fibiger Munch-Petersen
H
, et al
.
Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner
.
Mol Oncol
.
2018
;
12
(
2
):
180
-
195
.
47.
Drew
AE
,
Motwani
V
,
Eichinger
L
,
Smith
J
,
Raimondi
A
.
Mechanism of action of synergistic activity of EZH2 inhibition and IMiDs in preclinical multiple myeloma models [abstract]
.
Cancer Res
.
2018
;
78
(
13
).
48.
Bird
SA
,
Barber
A
,
Sialana
FJ
, et al
.
Multiomics analysis of IMiD/CELMoD resistant multiple myeloma models uncovers novel and targetable vulnerabilities in the SREBP lipid synthesis pathway [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
600
-
601
.
49.
Gooding
S
,
Ansari-Pour
N
,
Kazeroun
MH
, et al
.
Loss of COP9 signalosome genes at 2q37 is associated with IMiD agent resistance in multiple myeloma
.
Blood
.
2022;140(16):1816-1821
.
50.
Tilmont
R
,
Maity
R
,
Leblay
N
, et al
.
CRBN structural changes, copy number changes and COP9 signalosome subunits gene expression mediate sensitivity to new CELMoD compound CC-92480 in multiple myeloma patients [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
9964
-
9965
.
51.
Zhou
N
,
Gutierrez-Uzquiza
A
,
Zheng
XY
, et al
.
RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation
.
Leukemia
.
2019
;
33
(
8
):
2006
-
2021
.
52.
Barwick
BG
,
Neri
P
,
Bahlis
NJ
, et al
.
Multiple myeloma immunoglobulin lambda translocations portend poor prognosis
.
Nat Commun
.
2019
;
10
(
1
):
1911
.
53.
Liu
J
,
Hideshima
T
,
Xing
L
, et al
.
ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment
.
Sci Adv
.
2021
;
7
(
23
):
eabg2697
.
54.
Zhu
YX
,
Shi
CX
,
Bruins
LA
, et al
.
Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4
.
Blood Cancer J
.
2019
;
9
(
2
):
19
.
55.
Neri
P
,
Tagoug
I
,
Maity
R
, et al
.
Transcriptional plasticity compensates for Ikaros and Aiolos proteasomal degradation and mediates resistance to IMiDs in multiple myeloma (MM) [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
63
.
56.
Ng
YLD
,
Ramberger
E
,
Bohl
SR
, et al
.
Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma
.
Nat Commun
.
2022
;
13
(
1
):
1009
.
57.
Neri
PE
,
Tagoug
I
,
Ren
L
, et al
.
Transcriptome profiling of lenalidomide treated myeloma patients identifies an interferon signature gene response and a novel IRF4/MYC independent mechanism of resistance [abstract]
.
Blood
.
2014
;
124
(
21
):
170
.
58.
Van Oekelen
O
,
Amatangelo
M
,
Guo
M
, et al
.
Large-scale mass cytometry reveals significant activation of innate and adaptive immunity in bone marrow tumor microenvironment of iberdomide-treated myeloma patients [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
730
.
59.
Chung
DJ
,
Pronschinske
KB
,
Shyer
JA
, et al
.
T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy
.
Cancer Immunol Res
.
2016
;
4
(
1
):
61
-
71
.
60.
Batorov
EV
,
Aristova
TA
,
Sergeevicheva
VV
, et al
.
Quantitative and functional characteristics of circulating and bone marrow PD-1- and TIM-3-positive T cells in treated multiple myeloma patients
.
Sci Rep
.
2020
;
10
(
1
):
20846
.
61.
van der Veer
MS
,
de Weers
M
,
van Kessel
B
, et al
.
Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab
.
Haematologica
.
2011
;
96
(
2
):
284
-
290
.
62.
van der Veer
MS
,
de Weers
M
,
van Kessel
B
, et al
.
The therapeutic human CD38 antibody daratumumab improves the anti-myeloma effect of newly emerging multi-drug therapies
.
Blood Cancer J
.
2011
;
1
(
10
):
e41
.
63.
Casneuf
T
,
Adams
HC
,
van de Donk
NWCJ
, et al
.
Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab
.
Leukemia
.
2021
;
35
(
2
):
573
-
584
.
64.
Pierceall
WE
,
Amatangelo
MD
,
Bahlis
NJ
, et al
.
Immunomodulation in pomalidomide, dexamethasone, and daratumumab-treated patients with relapsed/refractory multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
22
):
5895
-
5902
.
65.
Tamura
H
,
Ishibashi
M
,
Sunakawa-Kii
M
,
Inokuchi
K
.
PD-L1-PD-1 pathway in the pathophysiology of multiple myeloma
.
Cancers (Basel)
.
2020
;
12
(
4
):
924
.
66.
Mateos
MV
,
Orlowski
RZ
,
Ocio
EM
, et al
.
Pembrolizumab combined with lenalidomide and low-dose dexamethasone for relapsed or refractory multiple myeloma: phase I KEYNOTE-023 study
.
Br J Haematol
.
2019
;
186
(
5
):
e117
-
e121
.
67.
Mateos
MV
,
Blacklock
H
,
Schjesvold
F
, et al;
KEYNOTE-183 Investigators
.
Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial
.
Lancet Haematol
.
2019
;
6
(
9
):
e459
-
e469
.
68.
Usmani
SZ
,
Schjesvold
F
,
Oriol
A
, et al;
KEYNOTE-185 Investigators
.
Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial
.
Lancet Haematol
.
2019
;
6
(
9
):
e448
-
e458
.
69.
Gandhi
AK
,
Mendy
D
,
Waldman
M
, et al
.
Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity
.
Br J Haematol
.
2014
;
164
(
2
):
233
-
244
.
70.
Costacurta
M
,
Vervoort
SJ
,
Hogg
SJ
,
Martin
BP
,
Johnstone
RW
,
Shortt
J
.
Whole genome CRISPR screening identifies TOP2B as a potential target for IMiD sensitization in multiple myeloma
.
Haematologica
.
2021
;
106
(
7
):
2013
-
2017
.
71.
Lopez-Girona
A
,
Havens
CG
,
Lu
G
, et al
.
CC-92480 is a novel cereblon E3 ligase modulator with enhanced tumoricidal and immunomodulatory activity against sensitive and resistant multiple myeloma cells [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
1812
.
72.
Hansen
JD
,
Correa
M
,
Nagy
MA
, et al
.
Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma
.
J Med Chem
.
2020
;
63
(
13
):
6648
-
6676
.
73.
Walker
ZJ
,
VanWyngarden
MJ
,
Stevens
BM
, et al
.
Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression
.
Blood Adv
.
2020
;
4
(
8
):
1628
-
1639
.
74.
Broyl
A
,
Kuiper
R
,
van Duin
M
, et al;
Dutch-Belgian HOVON group
German GMMG Group
.
High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance
.
Blood
.
2013
;
121
(
4
):
624
-
627
.
75.
Misiewicz-Krzeminska
I
,
Corchete
LA
,
Rojas
EA
, et al
.
A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility
.
Haematologica
.
2018
;
103
(
5
):
880
-
889
.
76.
Misiewicz-Krzeminska
I
,
de Ramón
C
,
Corchete
LA
, et al
.
Quantitative expression of Ikaros, IRF4, and PSMD10 proteins predicts survival in VRD-treated patients with multiple myeloma
.
Blood Adv
.
2020
;
4
(
23
):
6023
-
6033
.
77.
Agnarelli
A
,
Chevassut
T
,
Mancini
EJ
.
IRF4 in multiple myeloma-Biology, disease and therapeutic target
.
Leuk Res
.
2018
;
72
:
52
-
58
.
78.
Walker
BA
,
Boyle
EM
,
Wardell
CP
, et al
.
Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma
.
J Clin Oncol
.
2015
;
33
(
33
):
3911
-
3920
.
79.
Ferguson
ID
,
Patiño-Escobar
B
,
Tuomivaara
ST
, et al
.
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance
.
Nat Commun
.
2022
;
13
(
1
):
4121
.
80.
Bjorklund
CC
,
Kang
J
,
Amatangelo
M
, et al
.
Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN
.
Leukemia
.
2020
;
34
(
4
):
1197
-
1201
.
81.
Lonial
S
,
Shambavi
R
,
Matous
JV
, et al
.
Pharmacokinetic (PK) profile of a novel IKZF1/3 degrader, CFT7455, enables significant potency advantage over other IKZF1/3 degraders in models of multiple myeloma (MM) and the results of the initial treatment cohort from a first-in-human (FIH) phase 1/2 study of CFT7455 in MM [abstract]
.
Cancer Res
.
2022
;
82
(
12
).
82.
Yamamoto
J
,
Suwa
T
,
Murase
Y
, et al
.
ARID2 is a pomalidomide-dependent CRL4(CRBN) substrate in multiple myeloma cells
.
Nat Chem Biol
.
2020
;
16
(
11
):
1208
-
1217
.
83.
Wang
S
,
Li
Z
,
Gao
S
.
Key regulators of sensitivity to immunomodulatory drugs in cancer treatment
.
Biomark Res
.
2021
;
9
(
1
):
43
.
84.
Yamamoto
J
,
Ito
T
,
Yamaguchi
Y
,
Handa
H
.
Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders
.
Chem Soc Rev
.
2022
;
51
(
15
):
6234
-
6250
.
85.
Shimizu
N
,
Asatsuma-Okumura
T
,
Yamamoto
J
,
Yamaguchi
Y
,
Handa
H
,
Ito
T
.
PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates
.
Commun Biol
.
2021
;
4
(
1
):
1277
.
86.
Chopra
R
,
Sadok
A
,
Collins
I
.
A critical evaluation of the approaches to targeted protein degradation for drug discovery
.
Drug Discov Today Technol
.
2019
;
31
:
5
-
13
.
87.
Gao
S
,
Wang
S
,
Song
Y
.
Novel immunomodulatory drugs and neo-substrates
.
Biomark Res
.
2020
;
8
(
1
):
2
.
88.
Wu
W
,
Nelson
GM
,
Koch
R
, et al
.
Overcoming IMiD resistance in T-cell lymphomas through potent degradation of ZFP91 and IKZF1
.
Blood
.
2022
;
139
(
13
):
2024
-
2037
.
89.
Jones
JR
,
Barber
A
,
Le Bihan
YV
, et al
.
Mutations in CRBN and other cereblon pathway genes are infrequently associated with acquired resistance to immunomodulatory drugs
.
Leukemia
.
2021
;
35
(
10
):
3017
-
3020
.
90.
Matyskiela
ME
,
Zhang
W
,
Man
HW
, et al
.
A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos
.
J Med Chem
.
2018
;
61
(
2
):
535
-
542
.
You do not currently have access to this content.
Sign in via your Institution