• CS585 is a novel prostacyclin receptor agonist that effectively inhibits integrin activation, granule secretion, and aggregation.

  • CS585 is a highly potent and selective compound available both orally and IV and prevents thrombosis between 24 and 48 hours.

Cardiovascular disease remains the primary cause of morbidity and mortality globally. Platelet activation is critical for maintaining hemostasis and preventing the leakage of blood cells from the vessel. There has been a paucity in the development of new drugs to target platelet reactivity. Recently, the oxylipin 12(S)-hydroxy-eicosatrienoic acid (12-HETrE), which is produced in platelets, was shown to limit platelet reactivity by activating the prostacyclin receptor. Here, we demonstrated the synthesis of a novel analog of 12-HETrE, known as CS585. Human blood and mouse models of hemostasis and thrombosis were assessed for the ability of CS585 to attenuate platelet activation and thrombosis without increasing the risk of bleeding. Human platelet activation was assessed using aggregometry, flow cytometry, western blot analysis, total thrombus formation analysis system, microfluidic perfusion chamber, and thromboelastography. Hemostasis, thrombosis, and bleeding assays were performed in mice. CS585 was shown to potently target the prostacyclin receptor on the human platelet, resulting in a highly selective and effective mechanism for the prevention of platelet activation. Furthermore, CS585 was shown to inhibit platelet function in human whole blood ex vivo, prevent thrombosis in both small and large vessels in mouse models, and exhibit long-lasting prevention of clot formation. Finally, CS585 was not observed to perturb coagulation or increase the risk of bleeding in the mouse model. Hence, CS585 represents a new validated target for the treatment of thrombotic diseases without the risk of bleeding or off-target activation observed with other prostaglandin receptor agonists.

1.
Yeung
J
,
Li
W
,
Holinstat
M
.
Platelet signaling and disease: targeted therapy for thrombosis and other related diseases
.
Pharmacol Rev
.
2018
;
70
(
3
):
526
-
548
.
2.
Mackman
N
,
Bergmeier
W
,
Stouffer
GA
,
Weitz
JI
.
Therapeutic strategies for thrombosis: new targets and approaches
.
Nat Rev Drug Discov
.
2020
;
19
(
5
):
333
-
352
.
3.
Adamski
P
,
Koziński
M
,
Ostrowska
M
, et al
.
Overview of pleiotropic effects of platelet P2Y12 receptor inhibitors
.
Thromb Haemost
.
2014
;
112
(
2
):
224
-
242
.
4.
Ostrowska
M
,
Adamski
P
,
Koziński
M
, et al
.
Off-target effects of glycoprotein IIb/IIIa receptor inhibitors
.
Cardiol J
.
2014
;
21
(
5
):
458
-
464
.
5.
Serebruany
VL
,
Fortmann
SD
,
Rao
SV
, et al
.
Vorapaxar and diplopia: possible off-target PAR-receptor mismodulation
.
Thromb Haemost
.
2016
;
115
(
5
):
905
-
910
.
6.
Ikei
KN
,
Yeung
J
,
Apopa
PL
, et al
.
Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation
.
J Lipid Res
.
2012
;
53
(
12
):
2546
-
2559
.
7.
Tourdot
BE
,
Adili
R
,
Isingizwe
ZR
, et al
.
12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor
.
Blood Adv
.
2017
;
1
(
15
):
1124
-
1131
.
8.
Yeung
J
,
Tourdot
BE
,
Adili
R
, et al
.
12(S)-HETrE, a 12-lipoxygenase oxylipin of dihomo-gamma-linolenic acid, inhibits thrombosis via Galphas signaling in platelets
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
10
):
2068
-
2077
.
9.
Yamaguchi
A
,
Stanger
L
,
Freedman
CJ
, et al
.
DHA 12-LOX-derived oxylipins regulate platelet activation and thrombus formation through a PKA-dependent signaling pathway
.
J Thromb Haemost
.
2021
;
19
(
3
):
839
-
851
.
10.
Yeung
J
,
Adili
R
,
Yamaguchi
A
, et al
.
Omega-6 DPA and its 12-lipoxygenase-oxidized lipids regulate platelet reactivity in a nongenomic PPARα-dependent manner
.
Blood Adv
.
2020
;
4
(
18
):
4522
-
4537
.
11.
Tourdot
BE
,
Conaway
S
,
Niisuke
K
,
Edelstein
LC
,
Bray
PF
,
Holinstat
M
.
Mechanism of race-dependent platelet activation through the protease-activated receptor-4 and Gq signaling axis
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
12
):
2644
-
2650
.
12.
Renna
SA
,
Zhao
X
,
Kunapuli
SP
, et al
.
Novel strategy to combat the procoagulant phenotype in heparin-induced thrombocytopenia using 12-LOX inhibition
.
Arterioscler Thromb Vasc Biol
.
2023
. Published online 22 June.
13.
Arima
Y
,
Kaikita
K
,
Ishii
M
, et al
.
Assessment of platelet-derived thrombogenicity with the total thrombus-formation analysis system in coronary artery disease patients receiving antiplatelet therapy
.
J Thromb Haemost
.
2016
;
14
(
4
):
850
-
859
.
14.
Hosokawa
K
,
Ohnishi
T
,
Kondo
T
, et al
.
A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions
.
J Thromb Haemost
.
2011
;
9
(
10
):
2029
-
2037
.
15.
Adili
R
,
Tourdot
BE
,
Mast
K
, et al
.
First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
10
):
1828
-
1839
.
16.
Reheman
A
,
Gross
P
,
Yang
H
, et al
.
Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation
.
J Thromb Haemost
.
2005
;
3
(
5
):
875
-
883
.
17.
Wang
Y
,
Reheman
A
,
Spring
CM
, et al
.
Plasma fibronectin supports hemostasis and regulates thrombosis
.
J Clin Invest
.
2014
;
124
(
10
):
4281
-
4293
.
18.
He
H
,
Adili
R
,
Liu
L
,
Hong
K
,
Holinstat
M
,
Schwendeman
A
.
Synthetic high-density lipoproteins loaded with an antiplatelet drug for efficient inhibition of thrombosis in mice
.
Sci Adv
.
2020
;
6
(
49
):
eabd0130
.
19.
Pretorius
E
,
Swanepoel
AC
,
DeVilliers
S
,
Bester
J
.
Blood clot parameters: thromboelastography and scanning electron microscopy in research and clinical practice
.
Thromb Res
.
2017
;
154
:
59
-
63
.
20.
Ellis
TC
,
Nielsen
VG
,
Marques
MB
,
Kirklin
JK
.
Thrombelastographic measures of clot propagation: a comparison of alpha with the maximum rate of thrombus generation
.
Blood Coagul Fibrinolysis
.
2007
;
18
(
1
):
45
-
48
.
21.
Regling
K
,
Kakulavarapu
S
,
Thomas
R
,
Hollon
W
,
Chitlur
MB
.
Utility of thromboelastography for the diagnosis of von Willebrand disease
.
Pediatr Blood Cancer
.
2019
;
66
(
7
):
e27714
.
22.
Cebo
M
,
Dittrich
K
,
Fu
X
, et al
.
Platelet ACKR3/CXCR7 favors antiplatelet lipids over an atherothrombotic lipidome and regulates thromboinflammation
.
Blood
.
2022
;
139
(
11
):
1722
-
1742
.
23.
Biringer
RG
.
A review of prostanoid receptors: expression, characterization, regulation, and mechanism of action
.
J Cell Commun Signal
.
2021
;
15
(
2
):
155
-
184
.
24.
Biringer
RG
.
A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action
.
J Cell Commun Signal
.
2022
;
16
(
1
):
5
-
46
.
25.
Morrison
K
,
Haag
F
,
Ernst
R
,
Iglarz
M
,
Clozel
M
.
Selective prostacyclin receptor agonist selexipag, in contrast to prostacyclin analogs, does not evoke paradoxical vasoconstriction of the rat femoral artery
.
J Pharmacol Exp Ther
.
2018
;
365
(
3
):
727
-
733
.
26.
Zlamal
J
,
Althaus
K
,
Jaffal
H
, et al
.
Upregulation of cAMP prevents antibody-mediated thrombus formation in COVID-19
.
Blood Adv
.
2022
;
6
(
1
):
248
-
258
.
27.
Engelmann
B
,
Massberg
S
.
Thrombosis as an intravascular effector of innate immunity
.
Nat Rev Immunol
.
2013
;
13
(
1
):
34
-
45
.
28.
von Bruhl
ML
,
Stark
K
,
Steinhart
A
, et al
.
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
.
J Exp Med
.
2012
;
209
(
4
):
819
-
835
.
29.
Coons
JC
,
Stevenson
JM
,
Patel
A
,
Smith
AJC
,
Prebehalla
L
,
Empey
PE
.
Antiplatelet therapy and bleeding outcomes with CYP2C19 genotyping
.
J Cardiovasc Pharmacol Ther
.
2022
;
27
:
10742484221143246
.
30.
Norel
X
,
Sugimoto
Y
,
Ozen
G
, et al
.
International Union of Basic and Clinical Pharmacology. CIX. Differences and similarities between human and rodent prostaglandin E(2) receptors (EP1-4) and prostacyclin receptor (IP): specific roles in pathophysiologic conditions
.
Pharmacol Rev
.
2020
;
72
(
4
):
910
-
968
.
31.
Ruopp
NF
,
Cockrill
BA
.
Diagnosis and treatment of pulmonary arterial hypertension: a review
.
JAMA
.
2022
;
327
(
14
):
1379
-
1391
.
32.
Li
Z
,
Luo
W
,
Fang
S
, et al
.
Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient
.
Acta Physiol
.
2021
;
231
(
2
):
e13555
.
33.
Kolb
M
,
Orfanos
SE
,
Lambers
C
, et al
.
The antifibrotic effects of inhaled treprostinil: an emerging option for ILD
.
Adv Ther
.
2022
;
39
(
9
):
3881
-
3895
.
34.
Tsao
CW
,
Aday
AW
,
Almarzooq
ZI
, et al
.
Heart disease and stroke statistics-2023 update: a report from the American Heart Association
.
Circulation
.
2023
;
147
(
8
):
e93
-
e621
.
35.
Patel
RJ
,
Marmor
R
,
Dakour
H
,
Elsayed
N
,
Ramachandran
M
,
Malas
MB
.
Dual antiplatelet therapy is associated with increased risk of bleeding and decreased risk of stroke following carotid endarterectomy
.
Ann Vasc Surg
.
2023
;
88
:
191
-
198
.
36.
Schmaier
AA
,
Anderson
PF
,
Chen
SM
, et al
.
TMEM16E regulates endothelial cell procoagulant activity and thrombosis
.
J Clin Invest
.
2023
;
133
(
11
):
e163808
.
37.
Meyer-Kirchrath
J
,
Debey
S
,
Glandorff
C
,
Kirchrath
L
,
Schror
K
.
Gene expression profile of the Gs-coupled prostacyclin receptor in human vascular smooth muscle cells
.
Biochem Pharmacol
.
2004
;
67
(
4
):
757
-
765
.
38.
Midgett
C
,
Stitham
J
,
Martin
K
,
Hwa
J
.
Prostacyclin receptor regulation—from transcription to trafficking
.
Curr Mol Med
.
2011
;
11
(
7
):
517
-
528
.
39.
Vane
J
,
Corin
RE
.
Prostacyclin: a vascular mediator
.
Eur J Vasc Endovasc Surg
.
2003
;
26
(
6
):
571
-
578
.
40.
Fetalvero
KM
,
Martin
KA
,
Hwa
J
.
Cardioprotective prostacyclin signaling in vascular smooth muscle
.
Prostaglandins Other Lipid Mediat
.
2007
;
82
(
1-4
):
109
-
118
.
You do not currently have access to this content.
Sign in via your Institution