• Persistent DNA damage induces AREG expression in BM LepR+ cells deficient of the Brca2 gene.

  • Overproduced AREG activates the PI3K/AKT/mTOR pathway, promotes HSC cycling, and compromises HSC quiescence in LepR-Cre;Brca2fl/fl mice.

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage–inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti–AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair–deficient and aged mice also showed persistent DNA damage–associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.

1.
Himburg
H
,
Doan
PL
,
Quarmyne
M
, et al
.
Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms
.
Nat Med
.
2017
;
23
(
1
):
91
-
99
.
2.
Himburg
HA
,
Termini
CM
,
Schlussel
L
, et al
.
Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration
.
Cell Stem Cell
.
2018
;
23
(
3
):
370
-
381.e5
.
3.
Joseph
C
,
Quach
JM
,
Walkley
CR
,
Lane
SW
,
Lo Celso
C
,
Purton
LE
.
Deciphering Hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies
.
Cell Stem Cell
.
2013
;
13
(
5
):
520
-
533
.
4.
Zhou
BO
,
Ding
L
,
Morrison
SJ
.
Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1
.
eLife
.
2015
;
4
:
e05521
.
5.
Zhou
BO
,
Yu
H
,
Yue
R
, et al
.
Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF
.
Nat Cell Biol
.
2017
;
19
(
8
):
891
-
903
.
6.
Mendelson
A
,
Frenette
PS
.
Hematopoietic stem cell niche maintenance during homeostasis and regeneration
.
Nat Med
.
2014
;
20
(
8
):
833
-
846
.
7.
Wei
Q
,
Frenette
PS
.
Niches for hematopoietic stem cells and their progeny
.
Immunity
.
2018
;
48
(
4
):
632
-
648
.
8.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
JG
,
Morrison
SJ
.
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
9.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain hematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
10.
Ding
L
,
Morrison
SJ
.
Hematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
11.
Welsh
C
,
Day
R
,
McGurk
C
,
Masters
JRW
,
Wood
RD
,
Köberle
B
.
Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumour cell lines
.
Int J Cancer
.
2004
;
110
(
3
):
352
-
361
.
12.
Mendoza
J
,
Martínez
J
,
Hernández
C
, et al
.
Association between ERCC1 and XPA expression and polymorphisms and the response to cisplatin in testicular germ cell tumours
.
Br J Cancer
.
2013
;
109
(
1
):
68
-
75
.
13.
Ciccia
A
,
Elledge
SJ
.
The DNA damage response: making it safe to play with knives
.
Mol Cell
.
2010
;
40
(
2
):
179
-
204
.
14.
Pan
MR
,
Li
K
,
Lin
SY
,
Hung
WC
.
Connecting the dots: from DNA damage and repair to aging
.
Int J Mol Sci
.
2016
;
17
(
5
):
685
.
15.
Naka
K
,
Hirao
A
.
Maintenance of genomic integrity in hematopoietic stem cells
.
Int J Hematol
.
2011
;
93
(
4
):
434
-
439
.
16.
Rossi
DJ
,
Bryder
D
,
Seita
J
,
Nussenzweig
A
,
Hoeijmakers
J
,
Weissman
IL
.
Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
.
Nature
.
2007
;
447
(
7145
):
725
-
729
.
17.
Zhang
S
,
Yajima
H
,
Huynh
H
, et al
.
Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair
.
J Cell Biol
.
2011
;
193
(
2
):
295
-
305
.
18.
Geiger
H
,
de Haan
G
,
Florian
MC
.
The ageing haematopoietic stem cell compartment
.
Nat Rev Immunol
.
2013
;
13
(
5
):
376
-
389
.
19.
Li
T
,
Zhou
ZW
,
Ju
Z
,
Wang
ZQ
.
DNA damage response in hematopoietic stem cell ageing
.
Genomics Proteomics Bioinformatics
.
2016
;
14
(
3
):
147
-
154
.
20.
Moehrle
BM
,
Geiger
H
.
Aging of hematopoietic stem cells: DNA damage and mutations
.
Exp Hematol
.
2016
;
44
(
10
):
895
-
901
.
21.
Doan
PL
,
Himburg
HA
,
Helms
K
, et al
.
Epidermal growth factor regulates hematopoietic regeneration following radiation injury
.
Nat Med
.
2013
;
19
(
3
):
295
-
304
.
22.
Lin
Q
,
Wu
L
,
Chatla
S
, et al
.
Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis
.
J Clin Invest
.
2022
;
132
(
12
):
e155914
.
23.
Narod
SA
,
Foulkes
WD
.
BRCA1 and BRCA2: 1994 and beyond
.
Nat Rev Cancer
.
2004
;
4
(
9
):
665
-
676
.
24.
Yoshida
K
,
Miki
Y
.
Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage
.
Cancer Sci
.
2004
;
95
(
11
):
866
-
871
.
25.
Semmler
L
,
Reiter-Brennan
C
,
Klein
A
.
BRCA1 and breast cancer: a review of the underlying mechanisms resulting in the tissue-specific tumorigenesis in mutation carriers
.
J Breast Cancer
.
2019
;
22
(
1
):
1
-
14
.
26.
Venkitaraman
AR
.
How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?
.
DNA Repair (Amst)
.
2019
;
81
:
102668
.
27.
Meyer
S
,
Tischkowitz
M
,
Chandler
K
,
Gillespie
A
,
Birch
JM
,
Evans
DG
.
Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling
.
J Med Genet
.
2014
;
51
(
2
):
71
-
75
.
28.
Navarro
S
,
Meza
NW
,
Quintana-Bustamante
O
, et al
.
Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1
.
Mol Ther
.
2006
;
14
(
4
):
525
-
535
.
29.
Berasain
C
,
Avila
MA
.
Amphiregulin
.
Semin Cell Dev Biol
.
2014
;
28
:
31
-
41
.
30.
Zaiss
DMW
,
Gause
WC
,
Osborne
LC
,
Artis
D
.
Emerging functions of amphiregulin in orchestrating immunity, inflammation and tissue repair
.
Immunity
.
2015
;
42
(
2
):
216
-
226
.
31.
Arpaia
N
,
Green
JA
,
Moltedo
B
, et al
.
A distinct function of regulatory T cells in tissue protection
.
Cell
.
2015
;
162
(
5
):
1078
-
1089
.
32.
Monticelli
LA
,
Sonnenberg
GF
,
Abt
MC
, et al
.
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus
.
Nat Immunol
.
2011
;
12
(
11
):
1045
-
1054
.
33.
Zaiss
DM
,
van Loosdregt
J
,
Gorlani
A
, et al
.
Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor
.
Immunity
.
2013
;
38
(
2
):
275
-
284
.
34.
Meulenbroeks
C
,
van Weelden
H
,
Schwartz
C
, et al
.
Basophil-derived amphiregulin is essential for UVB irradiation-induced immune suppression
.
J Invest Dermatol
.
2015
;
135
(
1
):
222
-
228
.
35.
Dai
K
,
Huang
L
,
Sun
X
,
Yang
L
,
Gong
Z
.
Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection
.
J Leukoc Biol
.
2015
;
98
(
6
):
1071
-
1080
.
36.
Xu
Q
,
Chiao
P
,
Sun
Y
.
Amphiregulin in cancer: new insights for translational medicine
.
Trends Cancer
.
2016
;
2
(
3
):
111
-
113
.
37.
Minutti
CM
,
Modak
RV
,
Macdonald
F
, et al
.
A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor Beta activation
.
Immunity
.
2019
;
50
(
3
):
645
-
654.e6
.
38.
Ko
JH
,
Kim
HJ
,
Jeong
HJ
,
Lee
HJ
,
Oh
JY
.
Mesenchymal stem and stromal cells harness macrophage-derived amphiregulin to maintain tissue homeostasis
.
Cell Rep
.
2020
;
30
(
11
):
3806
-
3820.e6
.
39.
Schuger
L
,
Johnson
GR
,
Gilbride
K
,
Plowman
GD
,
Mandel
R
.
Amphiregulin in lung branching morphogenesis: interaction with heparan sulfate proteoglycan modulates cell proliferation
.
Development
.
1996
;
122
(
6
):
1759
-
1767
.
40.
Cook
PW
,
Mattox
PA
,
Keeble
WW
, et al
.
A heparin sulfate-regulated human keratinocyte autocrine factor is similar or identical to amphiregulin
.
Mol Cell Biol
.
1991
;
11
(
5
):
2547
-
2557
.
41.
Li
S
,
Plowman
GD
,
Buckley
SD
,
Shipley
GD
.
Heparin inhibition of autonomous growth implicates amphiregulin as an autocrine growth factor for normal human mammary epithelial cells
.
J Cell Physiol
.
1992
;
153
(
1
):
103
-
111
.
42.
Kennedy-Crispin
M
,
Billick
E
,
Mitsui
H
, et al
.
Human keratinocytes' response to injury upregulates CCL20 and other genes linking innate and adaptive immunity
.
J Invest Dermatol
.
2012
;
132
(
1
):
105
-
113
.
43.
Roy
S
,
Krishnan
S
,
Kumar
V
,
Kesarwani
A
,
Mukhopadhyay
A
.
Amphiregulin confers protection to murine hematopoietic progenitor cells from apoptotic death
.
SciTz Stem Cell Res Ther
.
2016
;
1
(
1
):
1001
.
44.
Jonkers
J
,
Meuwissen
R
,
van der Gulden
H
,
Peterse
H
,
van der Valk
M
,
Berns
A
.
Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer
.
Nat Genet
.
2001
;
29
(
4
):
418
-
425
.
45.
Luetteke
NC
,
Qiu
TH
,
Fenton
SE
, et al
.
Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development
.
Development
.
1999
;
126
(
12
):
2739
-
2750
.
46.
Houghtaling
S
,
Timmers
C
,
Noll
M
, et al
.
Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice
.
Genes Dev
.
2003
;
17
(
16
):
2021
-
2035
.
47.
Florian
MC
,
Klose
M
,
Sacma
M
, et al
.
Aging alters the epigenetic asymmetry of HSC division
.
PLoS Biol
.
2018
;
16
(
9
):
e2003389
.
48.
Leshan
RL
,
Bjornholm
M
,
Munzberg
H
,
Myers
MG
.
Leptin receptor signaling and action in the central nervous system
.
Obesity (Silver Spring)
.
2006
;
14
(
suppl 5
):
208S
-
212S
.
49.
Rodda
SJ
,
McMahon
AP
.
Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
.
Development
.
2006
;
133
(
16
):
3231
-
3244
.
50.
Alva
JA
,
Zovein
AC
,
Monvoisin
A
, et al
.
VE-cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells
.
Dev Dyn
.
2006
;
235
(
3
):
759
-
767
.
51.
Lin
Q
,
Wu
L
,
Ma
Z
,
Chowdhury
FA
,
Mazumder
HH
,
Du
W
.
Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function
.
JCI Insight
.
2020
;
5
(
10
):
e133365
.
52.
Celeste
A
,
Difilippantonio
S
,
Difilippantonio
MJ
, et al
.
H2AX haploinsufficiency modifies genomic stability and tumor susceptibility
.
Cell
.
2003
;
114
(
3
):
371
-
383
.
53.
Mao
Z
,
Hine
C
,
Tian
X
, et al
.
SIRT6 promotes DNA repair under stress by activating PARP1
.
Science
.
2011
;
332
(
6036
):
1443
-
1446
.
54.
Du
W
,
Amarachintha
S
,
Wilson
AF
,
Pang
Q
.
Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells
.
Sci Rep
.
2016
;
6
:
22167
.
55.
Holloman
WK
.
Unraveling the mechanism of BRCA2 in homologous recombination
.
Nat Struct Mol Biol
.
2011
;
18
(
7
):
748
-
754
.
56.
Xia
F
,
Taghian
DG
,
DeFrank
JS
, et al
.
Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
15
):
8644
-
8649
.
57.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell
.
2005
;
121
(
7
):
1109
-
1121
.
58.
Mann
M
,
Mehta
A
,
de Boer
CG
, et al
.
Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age
.
Cell Rep
.
2018
;
25
(
11
):
2992
-
3005.e5
.
59.
Shen
H
,
Yu
H
,
Liang
PH
, et al
.
An acute negative bystander effect of g-irradiated recipients on transplanted hematopoietic stem cells
.
Blood
.
2012
;
119
(
15
):
3629
-
3637
.
60.
Xu
Q
,
Long
Q
,
Zhu
D
, et al
.
Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression
.
Aging Cell
.
2019
;
18
(
6
):
e13027
.
61.
Fang
T
,
Zhang
Y
,
Chang
VY
, et al
.
Epidermal growth factor receptor-dependent DNA repair promotes murine and human hematopoietic regeneration
.
Blood
.
2020
;
136
(
4
):
441
-
454
.
62.
Zaiss
DM
,
Yang
L
,
Shah
PR
,
Kobie
JJ
,
Urban
JF
,
Mosmann
TR
.
Amphiregulin, a TH2 cytokine enhancing resistance to nematodes
.
Science
.
2006
;
314
(
5806
):
1746
.
63.
Singh
B
,
Carpenter
G
,
Coffey
RJ
.
EGF receptor ligands: recent advances
.
F1000Res
.
2016
;
5
. F1000 Faculty Rev-2270.
64.
Koeppen
M
,
Lee
JW
,
Seo
SW
, et al
.
Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury
.
Nat Comm
.
2018
;
9
(
1
):
816
.
65.
Will
B
,
Vogler
TO
,
Bartholdy
B
, et al
.
Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment
.
Nat Immunol
.
2013
;
14
(
5
):
437
-
445
.
66.
Wilson
NK
,
Kent
DG
,
Buettner
F
, et al
.
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
.
Cell Stem Cell
.
2015
;
16
(
6
):
712
-
724
.
67.
Du
W
,
Amarachintha
S
,
Wilson
A
,
Pang
Q
.
The immune receptor Trem1 cooperates with diminished DNA damage response to induce preleukemic stem cell expansion
.
Leukemia
.
2017
;
31
(
2
):
423
-
433
.
68.
de Haan
G
,
Lazare
SS
.
Aging of hematopoietic stem cells
.
Blood
.
2018
;
131
(
5
):
479
-
487
.
69.
Young
K
,
Borikar
S
,
Bell
R
,
Kuffler
L
,
Philip
V
,
Trowbridge
JJ
.
Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging
.
J Exp Med
.
2016
;
213
(
11
):
2259
-
2267
.
70.
Barlow
C
,
Hirotsune
S
,
Paylor
R
, et al
.
Atm-deficient mice: a paradigm of ataxia telangiectasia
.
Cell
.
1996
;
86
(
1
):
159
-
171
.
71.
Crane
GM
,
Jeffery
E
,
Morrison
SJ
.
Adult hematopoietic stem cell niches
.
Nat Rev Immunol
.
2017
;
17
(
9
):
573
-
590
.
72.
Du
W
,
Adam
Z
,
Rani
R
,
Zhang
X
,
Pang
Q
.
Oxidative stress in Fanconi anemia hematopoiesis and disease progression
.
Antioxid Redox Signal
.
2008
;
10
(
11
):
1909
-
1921
.
73.
Longerich
S
,
Li
J
,
Xiong
Y
,
Sung
P
,
Kupfer
GM
.
Stress and DNA repair biology of the Fanconi anemia pathway
.
Blood
.
2014
;
124
(
18
):
2812
-
2819
.
74.
Zhan
S
,
Siu
J
,
Wang
Z
, et al
.
Focal point of Fanconi anemia signaling
.
Int J Mol Sci
.
2021
;
22
(
23
):
12976
.
75.
Flach
J
,
Bakker
ST
,
Mohrin
M
, et al
.
Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells
.
Nature
.
2014
;
512
(
7513
):
198
-
202
.
76.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature
.
2015
;
520
(
7548
):
549
-
552
.
77.
Martelli
AM
,
Evangelisti
C
,
Chiarini
F
, et al
.
The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis
.
Biochim Biophys Acta
.
2010
;
1803
(
9
):
991
-
1002
.
78.
Manning
BD
,
Cantley
LC
.
AKT/PKB signaling: navigating downstream
.
Cell
.
2007
;
129
(
7
):
1261
-
1274
.
79.
Brugge
J
,
Hung
MC
,
Mills
GB
.
A new mutational AKTivation in the PI3K pathway
.
Cancer Cell
.
2007
;
12
(
2
):
104
-
107
.
80.
Humtsoe
JO
,
Kramer
RH
.
Differential epidermal growth factor receptor signaling regulates anchorage-independent growth by modulation of the PI3K/AKT pathway
.
Oncogene
.
2010
;
29
(
8
):
1214
-
1226
.
81.
Fang
L
,
Yu
Y
,
Li
Y
, et al
.
Upregulation of AREG, EGFR, and HER2 contributes to increased VEGF expression in granulosa cells of patients with OHSS
.
Biol Reprod
.
2019
;
101
(
2
):
426
-
432
.
82.
Chen
Z
,
Chen
J
,
Gu
Y
, et al
.
Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells
.
Oncogene
.
2014
;
33
(
29
):
3869
-
3877
.
You do not currently have access to this content.
Sign in via your Institution