• Heptad TF occupancy is highly dynamic across HSPC subsets and associated with cell-type–specific gene expression.

  • Enhancers with cell-type–specific heptad occupancy share a common grammar with respect to TF binding motifs.

Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type–specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell–specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type–specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.

1.
Doulatov
S
,
Notta
F
,
Laurenti
E
,
Dick
JE
.
Hematopoiesis: a human perspective
.
Cell Stem Cell
.
2012
;
10
(
2
):
120
-
136
.
2.
Laurenti
E
,
Gottgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
3.
Setty
M
,
Kiseliovas
V
,
Levine
J
,
Gayoso
A
,
Mazutis
L
,
Pe'er
D
.
Characterization of cell fate probabilities in single-cell data with Palantir
.
Nat Biotechnol
.
2019
;
37
(
4
):
451
-
460
.
4.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet
.
2016
;
48
(
10
):
1193
-
1203
.
5.
Novershtern
N
,
Subramanian
A
,
Lawton
LN
, et al
.
Densely interconnected transcriptional circuits control cell states in human hematopoiesis
.
Cell
.
2011
;
144
(
2
):
296
-
309
.
6.
Xu
J
,
Shao
Z
,
Glass
K
, et al
.
Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis
.
Dev Cell
.
2012
;
23
(
4
):
796
-
811
.
7.
Davidson
EH
.
Emerging properties of animal gene regulatory networks
.
Nature
.
2010
;
468
(
7326
):
911
-
920
.
8.
Thoms
JAI
,
Beck
D
,
Pimanda
JE
.
Transcriptional networks in acute myeloid leukemia
.
Genes Chromosomes Cancer
.
2019
;
58
(
12
):
859
-
874
.
9.
Nasrallah
R
,
Fast
EM
,
Solaimani
P
, et al
.
Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes
.
Blood
.
2016
;
128
(
15
):
1928
-
1939
.
10.
Lara-Astiaso
D
,
Weiner
A
,
Lorenzo-Vivas
E
, et al
.
Immunogenetics. Chromatin state dynamics during blood formation
.
Science
.
2014
;
345
(
6199
):
943
-
949
.
11.
Lieberman-Aiden
E
,
van Berkum
NL
,
Williams
L
, et al
.
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
.
Science
.
2009
;
326
(
5950
):
289
-
293
.
12.
Dixon
JR
,
Jung
I
,
Selvaraj
S
, et al
.
Chromatin architecture reorganization during stem cell differentiation
.
Nature
.
2015
;
518
(
7539
):
331
-
336
.
13.
Oram
SH
,
Thoms
JA
,
Pridans
C
, et al
.
A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients
.
Oncogene
.
2010
;
29
(
43
):
5796
-
5808
.
14.
Curtis
DJ
,
Salmon
JM
,
Pimanda
JE
.
Concise review: blood relatives: formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1
.
Stem Cells
.
2012
;
30
(
6
):
1053
-
1058
.
15.
Li
Y
,
Luo
H
,
Liu
T
,
Zacksenhaus
E
,
Ben-David
Y
.
The ets transcription factor Fli-1 in development, cancer and disease
.
Oncogene
.
2015
;
34
(
16
):
2022
-
2031
.
16.
Hahn
CN
,
Chong
CE
,
Carmichael
CL
, et al
.
Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia
.
Nat Genet
.
2011
;
43
(
10
):
1012
-
1017
.
17.
Pimanda
JE
,
Ottersbach
K
,
Knezevic
K
, et al
.
Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
45
):
17692
-
17697
.
18.
Cai
Z
,
de Bruijn
M
,
Ma
X
, et al
.
Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo
.
Immunity
.
2000
;
13
(
4
):
423
-
431
.
19.
Mangan
JK
,
Speck
NA
.
RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making
.
Crit Rev Oncog
.
2011
;
16
(
1-2
):
77
-
91
.
20.
Thoms
JA
,
Birger
Y
,
Foster
S
, et al
.
ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer
.
Blood
.
2011
;
117
(
26
):
7079
-
7089
.
21.
Beck
D
,
Thoms
JA
,
Perera
D
, et al
.
Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes
.
Blood
.
2013
;
122
(
14
):
e12
-
22
.
22.
Diffner
E
,
Beck
D
,
Gudgin
E
, et al
.
Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia
.
Blood
.
2013
;
121
(
12
):
2289
-
2300
.
23.
Thoms
JAI
,
Truong
P
,
Subramanian
S
, et al
.
Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells
.
Blood
.
2021
;
138
(
16
):
1441
-
1455
.
24.
Mandoli
A
,
Singh
AA
,
Jansen
PW
, et al
.
CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia
.
Leukemia
.
2014
;
28
(
4
):
770
-
778
.
25.
Wilson
NK
,
Foster
SD
,
Wang
X
, et al
.
Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
.
Cell Stem Cell
.
2010
;
7
(
4
):
532
-
544
.
26.
Schmidl
C
,
Rendeiro
AF
,
Sheffield
NC
,
Bock
C
.
ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors
.
Nat Methods
.
2015
;
12
(
10
):
963
-
965
.
27.
Alinejad-Rokny
H
,
Ghavami Modegh
R
,
Rabiee
HR
, et al
.
MaxHiC: a robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments
.
PLoS Comput Biol
.
2022
;
18
(
6
):
e1010241
.
28.
Chen
T
,
Guestrin
C
. XGBoost: a scalable tree boosting system.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery
.
2016
:
785
-
794
.
29.
Tursky
ML
,
Beck
D
,
Thoms
JA
, et al
.
Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias
.
Leukemia
.
2015
;
29
(
4
):
819
-
827
.
30.
Knudsen
KJ
,
Rehn
M
,
Hasemann
MS
, et al
.
ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation
.
Genes Dev
.
2015
;
29
(
18
):
1915
-
1929
.
31.
Takayama
N
,
Murison
A
,
Takayanagi
SI
, et al
.
The transition from quiescent to activated states in human hematopoietic stem cells is governed by dynamic 3D genome reorganization
.
Cell Stem Cell
.
2021
;
28
(
3
):
488
-
501.e10
.
32.
Schutte
J
,
Wang
H
,
Antoniou
S
, et al
.
An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability
.
Elife
.
2016
;
5
:
e11469
.
33.
Wilson
NK
,
Miranda-Saavedra
D
,
Kinston
S
, et al
.
The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development
.
Blood
.
2009
;
113
(
22
):
5456
-
5465
.
34.
Sinclair
AM
,
Gottgens
B
,
Barton
LM
, et al
.
Distinct 5' SCL enhancers direct transcription to developing brain, spinal cord, and endothelium: neural expression is mediated by GATA factor binding sites
.
Dev Biol
.
1999
;
209
(
1
):
128
-
142
.
35.
Moignard
V
,
Macaulay
IC
,
Swiers
G
, et al
.
Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
.
Nat Cell Biol
.
2013
;
15
(
4
):
363
-
372
.
36.
Landry
JR
,
Bonadies
N
,
Kinston
S
, et al
.
Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors
.
Blood
.
2009
;
113
(
23
):
5783
-
5792
.
37.
Gottgens
B
,
Broccardo
C
,
Sanchez
MJ
, et al
.
The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5' bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1
.
Mol Cell Biol
.
2004
;
24
(
5
):
1870
-
1883
.
38.
Gottgens
B
,
Ferreira
R
,
Sanchez
MJ
, et al
.
cis-regulatory remodeling of the SCL locus during vertebrate evolution
.
Mol Cell Biol
.
2010
;
30
(
24
):
5741
-
5751
.
39.
Gottgens
B
,
Nastos
A
,
Kinston
S
, et al
.
Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors
.
EMBO J
.
2002
;
21
(
12
):
3039
-
3050
.
40.
Sanchez
M
,
Gottgens
B
,
Sinclair
AM
, et al
.
An SCL 3' enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors
.
Development
.
1999
;
126
(
17
):
3891
-
3904
.
41.
Bee
T
,
Ashley
EL
,
Bickley
SR
, et al
.
The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters
.
Blood
.
2009
;
113
(
21
):
5121
-
5124
.
42.
Nottingham
WT
,
Jarratt
A
,
Burgess
M
, et al
.
Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer
.
Blood
.
2007
;
110
(
13
):
4188
-
4197
.
43.
Chan
WY
,
Follows
GA
,
Lacaud
G
, et al
.
The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl-/- phenotype
.
Blood
.
2007
;
109
(
5
):
1908
-
1916
.
44.
Johnson
KD
,
Kong
G
,
Gao
X
, et al
.
Cis-regulatory mechanisms governing stem and progenitor cell transitions
.
Sci Adv
.
2015
;
1
(
8
):
e1500503
.
45.
Wozniak
RJ
,
Boyer
ME
,
Grass
JA
,
Lee
Y
,
Bresnick
EH
.
Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells
.
J Biol Chem
.
2007
;
282
(
19
):
14665
-
14674
.
46.
Beerman
I
,
Bhattacharya
D
,
Zandi
S
, et al
.
Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
12
):
5465
-
5470
.
47.
Strobl
H
,
Takimoto
M
,
Majdic
O
, et al
.
Myeloperoxidase expression in CD34+ normal human hematopoietic cells
.
Blood
.
1993
;
82
(
7
):
2069
-
2078
.
48.
Pevny
L
,
Simon
MC
,
Robertson
E
, et al
.
Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1
.
Nature
.
1991
;
349
(
6306
):
257
-
260
.
49.
Suzuki
M
,
Kobayashi-Osaki
M
,
Tsutsumi
S
, et al
.
GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation
.
Genes Cells
.
2013
;
18
(
11
):
921
-
933
.
50.
Rossmann
MP
,
Zon
LI
.
'Enhancing' red cell fate through epigenetic mechanisms
.
Curr Opin Hematol
.
2021
;
28
(
3
):
129
-
137
.
51.
Cabezas-Wallscheid
N
,
Klimmeck
D
,
Hansson
J
, et al
.
Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis
.
Cell Stem Cell
.
2014
;
15
(
4
):
507
-
522
.
52.
Ernst
J
,
Kellis
M
.
ChromHMM: automating chromatin-state discovery and characterization
.
Nat Methods
.
2012
;
9
(
3
):
215
-
216
.
53.
Bresnick
EH
,
Lee
HY
,
Fujiwara
T
,
Johnson
KD
,
Keles
S
.
GATA switches as developmental drivers
.
J Biol Chem
.
2010
;
285
(
41
):
31087
-
31093
.
54.
Seguin-Estevez
Q
,
Dunand-Sauthier
I
,
Lemeille
S
, et al
.
Extensive remodeling of DC function by rapid maturation-induced transcriptional silencing
.
Nucleic Acids Res
.
2014
;
42
(
15
):
9641
-
9655
.
55.
Rosenbauer
F
,
Wagner
K
,
Kutok
JL
, et al
.
Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1
.
Nat Genet
.
2004
;
36
(
6
):
624
-
630
.
56.
Zhang
P
,
Zhang
X
,
Iwama
A
, et al
.
PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding
.
Blood
.
2000
;
96
(
8
):
2641
-
2648
.
57.
Dahl
R
,
Ramirez-Bergeron
DL
,
Rao
S
,
Simon
MC
.
Spi-B can functionally replace PU.1 in myeloid but not lymphoid development
.
EMBO J
.
2002
;
21
(
9
):
2220
-
2230
.
58.
Ku
CJ
,
Hosoya
T
,
Maillard
I
,
Engel
JD
.
GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry
.
Blood
.
2012
;
119
(
10
):
2242
-
2251
.
59.
Frelin
C
,
Herrington
R
,
Janmohamed
S
, et al
.
GATA-3 regulates the self-renewal of long-term hematopoietic stem cells
.
Nat Immunol
.
2013
;
14
(
10
):
1037
-
1044
.
60.
Nerlov
C
,
Graf
T
.
PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
.
Genes Dev
.
1998
;
12
(
15
):
2403
-
2412
.
61.
Wunsche
P
,
Eckert
ESP
,
Holland-Letz
T
, et al
.
Mapping active gene-regulatory regions in human repopulating long-term HSCs
.
Cell Stem Cell
.
2018
;
23
(
1
):
132
-
146.e9
.
62.
Canver
MC
,
Smith
EC
,
Sher
F
, et al
.
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
.
Nature
.
2015
;
527
(
7577
):
192
-
197
.
63.
Xu
J
,
Song
F
,
Lyu
H
, et al
.
Subtype-specific 3D genome alteration in acute myeloid leukaemia
.
Nature
.
2022
;
611
(
7935
):
387
-
398
.
64.
Yamazaki
H
,
Suzuki
M
,
Otsuki
A
, et al
.
A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression
.
Cancer Cell
.
2014
;
25
(
4
):
415
-
427
.
65.
Groschel
S
,
Sanders
MA
,
Hoogenboezem
R
, et al
.
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
.
Cell
.
2014
;
157
(
2
):
369
-
381
.
66.
Madsen
JGS
,
Madsen
MS
,
Rauch
A
, et al
.
Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells
.
Nat Genet
.
2020
;
52
(
11
):
1227
-
1238
.
67.
Zuin
J
,
Roth
G
,
Zhan
Y
, et al
.
Nonlinear control of transcription through enhancer-promoter interactions
.
Nature
.
2022
;
604
(
7906
):
571
-
577
.
68.
Chiu
SK
,
Orive
SL
,
Moon
MJ
, et al
.
Shared roles for Scl and Lyl1 in murine platelet production and function
.
Blood
.
2019
;
134
(
10
):
826
-
835
.
69.
Spitz
F
,
Furlong
EE
.
Transcription factors: from enhancer binding to developmental control
.
Nat Rev Genet
.
2012
;
13
(
9
):
613
-
626
.
70.
Neumayr
C
,
Haberle
V
,
Serebreni
L
, et al
.
Differential cofactor dependencies define distinct types of human enhancers
.
Nature
.
2022
;
606
(
7913
):
406
-
413
.
71.
Cornejo-Paramo
P
,
Roper
K
,
Degnan
SM
,
Degnan
BM
,
Wong
ES
.
Distal regulation, silencers, and a shared combinatorial syntax are hallmarks of animal embryogenesis
.
Genome Res
.
2022
;
32
(
3
):
474
-
487
.
72.
Goode
DK
,
Obier
N
,
Vijayabaskar
MS
, et al
.
Dynamic gene regulatory networks drive hematopoietic specification and differentiation
.
Dev Cell
.
2016
;
36
(
5
):
572
-
587
.
73.
Voit
RA
,
Liao
X
,
Cohen
B
, et al
.
Regulated expression of GATA1 as a gene therapy cure for Diamond-Blackfan Anemia
.
Blood
.
2022
;
140
(
suppl 1
):
986
-
987
.
74.
Edginton-White
B
,
Maytum
A
,
Kellaway
SG
, et al
.
A genome-wide relay of signalling-responsive enhancers drives hematopoietic specification
.
Nat Commun
.
2023
;
14
(
1
):
267
.
75.
Assi
SA
,
Imperato
MR
,
Coleman
DJL
, et al
.
Subtype-specific regulatory network rewiring in acute myeloid leukemia
.
Nat Genet
.
2019
;
51
(
1
):
151
-
162
.
76.
Loke
J
,
Assi
SA
,
Imperato
MR
, et al
.
RUNX1-ETO and RUNX1-EVI1 differentially reprogram the chromatin landscape in t(8;21) and t(3;21) AML
.
Cell Rep
.
2017
;
19
(
8
):
1654
-
1668
.
77.
Ptasinska
A
,
Assi
SA
,
Mannari
D
, et al
.
Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding
.
Leukemia
.
2012
;
26
(
8
):
1829
-
1841
.
78.
Botten
GA
,
Zhang
Y
,
Dudnyk
K
, et al
.
Structural variation cooperates with permissive chromatin to control enhancer hijacking-mediated oncogenic transcription
.
Blood
.
2022
;
140
(
suppl 1
):
1007
-
1008
.
79.
Buenrostro
JD
,
Corces
MR
,
Lareau
CA
, et al
.
Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation
.
Cell
.
2018
;
173
(
6
):
1535
-
1548.e16
.
80.
Karamitros
D
,
Stoilova
B
,
Aboukhalil
Z
, et al
.
Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells
.
Nat Immunol
.
2018
;
19
(
1
):
85
-
97
.
81.
Drissen
R
,
Thongjuea
S
,
Theilgaard-Monch
K
,
Nerlov
C
.
Identification of two distinct pathways of human myelopoiesis
.
Sci Immunol
.
2019
;
4
(
35
):
eaau7148
.
You do not currently have access to this content.
Sign in via your Institution