• Genome-wide CRISPR screens identify the IL-1R pathway as a novel oncogenic driver in pC ALK ALCL, which is activated by IL-1α autocrine.

  • IL-1R pathway cooperates with JAK signaling, and the JAK2/IRAK1 dual inhibitor pacritinib exhibits strong activities against pC ALK ALCL.

Anaplastic large cell lymphoma (ALCL), a subgroup of mature T-cell neoplasms with an aggressive clinical course, is characterized by elevated expression of CD30 and anaplastic cytology. To achieve a comprehensive understanding of the molecular characteristics of ALCL pathology and to identify therapeutic vulnerabilities, we applied genome-wide CRISPR library screenings to both anaplastic lymphoma kinase positive (ALK+) and primary cutaneous (pC) ALK ALCLs and identified an unexpected role of the interleukin-1R (IL-1R) inflammatory pathway in supporting the viability of pC ALK ALCL. Importantly, this pathway is activated by IL-1α in an autocrine manner, which is essential for the induction and maintenance of protumorigenic inflammatory responses in pC-ALCL cell lines and primary cases. Hyperactivation of the IL-1R pathway is promoted by the A20 loss-of-function mutation in the pC-ALCL lines we analyze and is regulated by the nonproteolytic protein ubiquitination network. Furthermore, the IL-1R pathway promotes JAK-STAT3 signaling activation in ALCLs lacking STAT3 gain-of-function mutation or ALK translocation and enhances the sensitivity of JAK inhibitors in these tumors in vitro and in vivo. Finally, the JAK2/IRAK1 dual inhibitor, pacritinib, exhibited strong activities against pC ALK ALCL, where the IL-1R pathway is hyperactivated in the cell line and xenograft mouse model. Thus, our studies revealed critical insights into the essential roles of the IL-1R pathway in pC-ALCL and provided opportunities for developing novel therapeutic strategies.

1.
Campo
E
,
Swerdlow
SH
,
Harris
NL
,
Pileri
S
,
Stein
H
,
Jaffe
ES
.
The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications
.
Blood
.
2011
;
117
(
19
):
5019
-
5032
.
2.
Kempf
W
.
CD30+ lymphoproliferative disorders: histopathology, differential diagnosis, new variants, and simulators
.
J Cutan Pathol
.
2006
;
33
(
suppl 1
):
58
-
70
.
3.
Falini
B
,
Martelli
MP
.
Anaplastic large cell lymphoma: changes in the World Health Organization classification and perspectives for targeted therapy
.
Haematologica
.
2009
;
94
(
7
):
897
-
900
.
4.
Morris
SW
,
Kirstein
MN
,
Valentine
MB
, et al
.
Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma
.
Science
.
1994
;
263
(
5151
):
1281
-
1284
.
5.
Shiota
M
,
Fujimoto
J
,
Semba
T
,
Satoh
H
,
Yamamoto
T
,
Mori
S
.
Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3
.
Oncogene
.
1994
;
9
(
6
):
1567
-
1574
.
6.
Lazzeri
D
,
Agostini
T
,
Bocci
G
, et al
.
ALK-1-negative anaplastic large cell lymphoma associated with breast implants: a new clinical entity
.
Clin Breast Cancer
.
2011
;
11
(
5
):
283
-
296
.
7.
Vose
J
,
Armitage
J
,
Weisenburger
D
;
International T-Cell Lymphoma Project
.
International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes
.
J Clin Oncol
.
2008
;
26
(
25
):
4124
-
4130
.
8.
Slupianek
A
,
Nieborowska-Skorska
M
,
Hoser
G
, et al
.
Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis
.
Cancer Res
.
2001
;
61
(
5
):
2194
-
2199
.
9.
Gao
J
,
Yin
M
,
Zhu
Y
, et al
.
Prognostic significance and therapeutic potential of the activation of anaplastic lymphoma kinase/protein kinase B/mammalian target of rapamycin signaling pathway in anaplastic large cell lymphoma
.
BMC Cancer
.
2013
;
13
:
471
.
10.
Marzec
M
,
Kasprzycka
M
,
Liu
X
, et al
.
Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway
.
Oncogene
.
2007
;
26
(
38
):
5606
-
5614
.
11.
Zhang
JP
,
Song
Z
,
Wang
HB
, et al
.
A novel model of controlling PD-L1 expression in ALK(+) anaplastic large cell lymphoma revealed by CRISPR screening
.
Blood
.
2019
;
134
(
2
):
171
-
185
.
12.
Schleussner
N
,
Merkel
O
,
Costanza
M
, et al
.
The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma
.
Leukemia
.
2018
;
32
(
9
):
1994
-
2007
.
13.
Atsaves
V
,
Lekakis
L
,
Drakos
E
, et al
.
The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma
.
Br J Haematol
.
2014
;
167
(
4
):
514
-
523
.
14.
Watanabe
M
,
Sasaki
M
,
Itoh
K
, et al
.
JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma
.
Cancer Res
.
2005
;
65
(
17
):
7628
-
7634
.
15.
Weilemann
A
,
Grau
M
,
Erdmann
T
, et al
.
Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma
.
Blood
.
2015
;
125
(
1
):
124
-
132
.
16.
Boddicker
RL
,
Kip
NS
,
Xing
X
, et al
.
The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-kappaB positive feedback loop in peripheral T-cell lymphoma
.
Blood
.
2015
;
125
(
20
):
3118
-
3127
.
17.
Bandini
C
,
Pupuleku
A
,
Spaccarotella
E
, et al
.
IRF4 mediates the oncogenic effects of STAT3 in anaplastic large cell lymphomas
.
Cancers (Basel)
.
2018
;
10
(
1
):
21
.
18.
Chen
J
,
Zhang
Y
,
Petrus
MN
, et al
.
Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
15
):
3975
-
3980
.
19.
Crescenzo
R
,
Abate
F
,
Lasorsa
E
, et al
.
Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma
.
Cancer Cell
.
2015
;
27
(
4
):
516
-
532
.
20.
Ehrentraut
S
,
Nagel
S
,
Scherr
ME
, et al
.
t(8;9)(p22;p24)/PCM1-JAK2 activates SOCS2 and SOCS3 via STAT5
.
PLoS One
.
2013
;
8
(
1
):
e53767
.
21.
Blombery
P
,
Thompson
ER
,
Jones
K
, et al
.
Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma
.
Haematologica
.
2016
;
101
(
9
):
e387
-
390
.
22.
Di Napoli
A
,
Jain
P
,
Duranti
E
, et al
.
Targeted next generation sequencing of breast implant-associated anaplastic large cell lymphoma reveals mutations in JAK/STAT signalling pathway genes, TP53 and DNMT3A
.
Br J Haematol
.
2018
;
180
(
5
):
741
-
744
.
23.
Letourneau
A
,
Maerevoet
M
,
Milowich
D
, et al
.
Dual JAK1 and STAT3 mutations in a breast implant-associated anaplastic large cell lymphoma
.
Virchows Arch
.
2018
;
473
(
4
):
505
-
511
.
24.
Oishi
N
,
Brody
GS
,
Ketterling
RP
, et al
.
Genetic subtyping of breast implant-associated anaplastic large cell lymphoma
.
Blood
.
2018
;
132
(
5
):
544
-
547
.
25.
Goncalves
E
,
Thomas
M
,
Behan
FM
, et al
.
Minimal genome-wide human CRISPR-Cas9 library
.
Genome Biol
.
2021
;
22
(
1
):
40
.
26.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
27.
Gross
O
,
Yazdi
AS
,
Thomas
CJ
, et al
.
Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1
.
Immunity
.
2012
;
36
(
3
):
388
-
400
.
28.
Di Paolo
NC
,
Shayakhmetov
DM
.
Interleukin 1alpha and the inflammatory process
.
Nat Immunol
.
2016
;
17
(
8
):
906
-
913
.
29.
Maura
F
,
Agnelli
L
,
Leongamornlert
D
, et al
.
Integration of transcriptional and mutational data simplifies the stratification of peripheral T-cell lymphoma
.
Am J Hematol
.
2019
;
94
(
6
):
628
-
634
.
30.
Wertz
IE
,
O'Rourke
KM
,
Zhou
H
, et al
.
De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
.
Nature
.
2004
;
430
(
7000
):
694
-
699
.
31.
Song
Z
,
Wei
W
,
Xiao
W
, et al
.
Essential role of the linear ubiquitin chain assembly complex and TAK1 kinase in A20 mutant Hodgkin lymphoma
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
46
):
28980
-
28991
.
32.
Tokunaga
F
,
Nishimasu
H
,
Ishitani
R
, et al
.
Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation
.
EMBO J
.
2012
;
31
(
19
):
3856
-
3870
.
33.
Verhelst
K
,
Carpentier
I
,
Kreike
M
, et al
.
A20 inhibits LUBAC-mediated NF-kappaB activation by binding linear polyubiquitin chains via its zinc finger 7
.
EMBO J
.
2012
;
31
(
19
):
3845
-
3855
.
34.
Bosanac
I
,
Wertz
IE
,
Pan
B
, et al
.
Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kappaB signaling
.
Mol Cell
.
2010
;
40
(
4
):
548
-
557
.
35.
Skaug
B
,
Chen
J
,
Du
F
,
He
J
,
Ma
A
,
Chen
ZJ
.
Direct, noncatalytic mechanism of IKK inhibition by A20
.
Mol Cell
.
2011
;
44
(
4
):
559
-
571
.
36.
Emmerich
CH
,
Ordureau
A
,
Strickson
S
, et al
.
Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
38
):
15247
-
15252
.
37.
Clark
K
,
Nanda
S
,
Cohen
P
.
Molecular control of the NEMO family of ubiquitin-binding proteins
.
Nat Rev Mol Cell Biol
.
2013
;
14
(
10
):
673
-
685
.
38.
Windheim
M
,
Stafford
M
,
Peggie
M
,
Cohen
P
.
Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase
.
Mol Cell Biol
.
2008
;
28
(
5
):
1783
-
1791
.
39.
Johansson
H
,
Isabella Tsai
YC
,
Fantom
K
, et al
.
Fragment-based covalent ligand screening enables rapid discovery of inhibitors for the RBR E3 ubiquitin ligase HOIP
.
J Am Chem Soc
.
2019
;
141
(
6
):
2703
-
2712
.
40.
Katsuya
K
,
Oikawa
D
,
Iio
K
, et al
.
Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF-kappaB signaling
.
Biochem Biophys Res Commun
.
2019
;
509
(
3
):
700
-
706
.
41.
Zhang
Q
,
Raghunath
PN
,
Xue
L
, et al
.
Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma
.
J Immunol
.
2002
;
168
(
1
):
466
-
474
.
42.
Redell
MS
,
Ruiz
MJ
,
Alonzo
TA
,
Gerbing
RB
,
Tweardy
DJ
.
Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor
.
Blood
.
2011
;
117
(
21
):
5701
-
5709
.
43.
Agnelli
L
,
Mereu
E
,
Pellegrino
E
, et al
.
Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma
.
Blood
.
2012
;
120
(
6
):
1274
-
1281
.
44.
Kondo
M
,
Tahara
A
,
Hayashi
K
, et al
.
Renoprotective effects of novel interleukin-1 receptor-associated kinase 4 inhibitor AS2444697 through anti-inflammatory action in 5/6 nephrectomized rats
.
Naunyn Schmiedebergs Arch Pharmacol
.
2014
;
387
(
10
):
909
-
919
.
45.
Ianevski
A
,
He
L
,
Aittokallio
T
,
Tang
J
.
SynergyFinder: a web application for analyzing drug combination dose-response matrix data
.
Bioinformatics
.
2017
;
33
(
15
):
2413
-
2415
.
46.
Hart
S
,
Goh
KC
,
Novotny-Diermayr
V
, et al
.
SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies
.
Leukemia
.
2011
;
25
(
11
):
1751
-
1759
.
47.
Singer
JW
,
Al-Fayoumi
S
,
Ma
H
,
Komrokji
RS
,
Mesa
R
,
Verstovsek
S
.
Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor
.
J Exp Pharmacol
.
2016
;
8
:
11
-
19
.
48.
Singer
JW
,
Fleischman
A
,
Al-Fayoumi
S
,
Mascarenhas
JO
,
Yu
Q
,
Agarwal
A
.
Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy
.
Oncotarget
.
2018
;
9
(
70
):
33416
-
33439
.
49.
Mascarenhas
J
,
Hoffman
R
,
Talpaz
M
, et al
.
Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial
.
JAMA Oncol
.
2018
;
4
(
5
):
652
-
659
.
50.
Komrokji
RS
,
Seymour
JF
,
Roberts
AW
, et al
.
Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis
.
Blood
.
2015
;
125
(
17
):
2649
-
2655
.
51.
Mascarenhas
J
.
Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia
.
Expert Rev Hematol
.
2022
;
15
(
8
):
671
-
684
.
52.
Hosseini
MM
,
Kurtz
SE
,
Abdelhamed
S
, et al
.
Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes
.
Leukemia
.
2018
;
32
(
11
):
2374
-
2387
.
53.
Hanahan
D
,
Weinberg
RA
.
Hallmarks of cancer: the next generation
.
Cell
.
2011
;
144
(
5
):
646
-
674
.
54.
Joyce
JA
,
Pollard
JW
.
Microenvironmental regulation of metastasis
.
Nat Rev Cancer
.
2009
;
9
(
4
):
239
-
252
.
55.
Mantovani
A
,
Barajon
I
,
Garlanda
C
.
IL-1 and IL-1 regulatory pathways in cancer progression and therapy
.
Immunol Rev
.
2018
;
281
(
1
):
57
-
61
.
56.
Mantovani
A
,
Allavena
P
,
Sica
A
,
Balkwill
F
.
Cancer-related inflammation
.
Nature
.
2008
;
454
(
7203
):
436
-
444
.
57.
Turner
SD
,
Inghirami
G
,
Miranda
RN
,
Kadin
ME
.
Cell of origin and immunologic events in the pathogenesis of breast implant-associated anaplastic large-cell lymphoma
.
Am J Pathol
.
2020
;
190
(
1
):
2
-
10
.
58.
Gurung
P
,
Kanneganti
TD
.
Autoinflammatory skin disorders: the inflammasomme in focus
.
Trends Mol Med
.
2016
;
22
(
7
):
545
-
564
.
59.
Tang
Y
,
Tu
H
,
Liu
G
, et al
.
RNF31 regulates skin homeostasis by protecting epidermal keratinocytes from cell death
.
J Immunol
.
2018
;
200
(
12
):
4117
-
4124
.
60.
Wang
H
,
Wei
W
,
Zhang
JP
, et al
.
A novel model of alternative NF-kappaB pathway activation in anaplastic large cell lymphoma
.
Leukemia
.
2021
;
35
(
7
):
1976
-
1989
.
You do not currently have access to this content.
Sign in via your Institution