• HDL attenuates and LDL enhances shear-induced VWF self-association in vitro and in vivo.

  • Elevated LDL increases formation of VWF-platelet thrombi in the myocardial microvasculature and other microvascular beds.

von Willebrand factor (VWF) mediates primary hemostasis and thrombosis in response to hydrodynamic forces. We previously showed that high shear promoted self-association of VWF into hyperadhesive strands, which can be attenuated by high-density lipoprotein (HDL) and apolipoprotein A-I. In this study, we show that low-density lipoprotein (LDL) binds VWF under shear and enhances self-association. Vortexing VWF in tubes resulted in its loss from the solution and deposition onto tube surfaces, which was prevented by HDL. At a stabilizing HDL concentration of 1.2 mg/mL, increasing concentrations of LDL progressively increased VWF loss, the effect correlating with the LDL-to-HDL ratio and not the absolute concentration of the lipoproteins. Similarly, HDL diminished deposition of VWF in a post-in-channel microfluidic device, whereas LDL increased both the rate and extent of strand deposition, with both purified VWF and plasma. Hypercholesterolemic human plasma also displayed accelerated VWF accumulation in the microfluidic device. The initial rate of accumulation correlated linearly with the LDL-to-HDL ratio. In Adamts13−/− and Adamts13/LDLR/ mice, high LDL levels enhanced VWF and platelet adhesion to the myocardial microvasculature, reducing cardiac perfusion, impairing systolic function, and producing early signs of cardiomyopathy. In wild-type mice, high plasma LDL concentrations also increased the size and persistence of VWF-platelet thrombi in ionophore-treated mesenteric microvessels, exceeding the accumulation seen in similarly treated ADAMTS13-deficient mice that did not receive LDL infusion. We propose that targeting the interaction of VWF with itself and with LDL may improve the course of thrombotic microangiopathies, atherosclerosis, and other disorders with defective microvascular circulation.

1.
Ruggeri
ZM
.
The role of von Willebrand factor in thrombus formation
.
Thromb Res
.
2007
;
120
(
suppl 1
):
S5
-
9
.
2.
Wagner
DD
,
Lawrence
SO
,
Ohlsson-Wilhelm
BM
,
Fay
PJ
,
Marder
VJ
.
Topology and order of formation of interchain disulfide bonds in von Willebrand factor
.
Blood
.
1987
;
69
(
1
):
27
-
32
.
3.
Lopes da Silva
M
,
Cutler
DF
.
von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells
.
Blood
.
2016
;
128
(
2
):
277
-
285
.
4.
Dong
JF
,
Moake
JL
,
Nolasco
L
, et al
.
ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions
.
Blood
.
2002
;
100
(
12
):
4033
-
4039
.
5.
Chung
DW
,
Chen
J
,
Ling
M
, et al
.
High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion
.
Blood
.
2016
;
127
(
5
):
637
-
645
.
6.
Zheng
Y
,
Chen
J
,
Lopez
JA
.
Flow-driven assembly of VWF fibres and webs in in vitro microvessels
.
Nat Commun
.
2015
;
6
:
7858
.
7.
Sing
CE
,
Alexander-Katz
A
.
Elongational flow induces the unfolding of von Willebrand factor at physiological flow rates
.
Biophys J
.
2010
;
98
(
9
):
L35
-
37
.
8.
Gogia
S
,
Neelamegham
S
.
Role of fluid shear stress in regulating VWF structure, function and related blood disorders
.
Biorheology
.
2015
;
52
(
5-6
):
319
-
335
.
9.
Bortot
M
,
Ashworth
K
,
Sharifi
A
, et al
.
Turbulent flow promotes cleavage of VWF (von Willebrand factor) by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13)
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
9
):
1831
-
1842
.
10.
Chen
J
,
Chung
DW
.
Inflammation, von Willebrand factor, and ADAMTS13
.
Blood
.
2018
;
132
(
2
):
141
-
147
.
11.
Sadler
JE
.
Pathophysiology of thrombotic thrombocytopenic purpura
.
Blood
.
2017
;
130
(
10
):
1181
-
1188
.
12.
Nolasco
LH
,
Turner
NA
,
Bernardo
A
, et al
.
Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers
.
Blood
.
2005
;
106
(
13
):
4199
-
4209
.
13.
Brill
A
,
Fuchs
TA
,
Chauhan
AK
, et al
.
von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models
.
Blood
.
2011
;
117
(
4
):
1400
-
1407
.
14.
Nossent
AY
,
VAN Marion
V
,
VAN Tilburg
NH
, et al
.
von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis
.
J Thromb Haemost
.
2006
;
4
(
12
):
2556
-
2562
.
15.
Payne
AB
,
Miller
CH
,
Hooper
WC
,
Lally
C
,
Austin
HD
.
High factor VIII, von Willebrand factor, and fibrinogen levels and risk of venous thromboembolism in blacks and whites
.
Ethn Dis
.
2014
;
24
(
2
):
169
-
174
.
16.
Angchaisuksiri
P
.
Coagulopathy in malaria
.
Thromb Res
.
2014
;
133
(
1
):
5
-
9
.
17.
Ware
LB
,
Eisner
MD
,
Thompson
BT
,
Parsons
PE
,
Matthay
MA
.
Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury
.
Am J Respir Crit Care Med
.
2004
;
170
(
7
):
766
-
772
.
18.
Chen
J
,
Hobbs
WE
,
Le
J
,
Lenting
PJ
,
de Groot
PG
,
Lopez
JA
.
The rate of hemolysis in sickle cell disease correlates with the quantity of active von Willebrand factor in the plasma
.
Blood
.
2011
;
117
(
13
):
3680
-
3683
.
19.
McCarty
OJ
,
Conley
RB
,
Shentu
W
, et al
.
Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype
.
JACC Cardiovasc Imaging
.
2010
;
3
(
9
):
947
-
955
.
20.
Methia
N
,
Andre
P
,
Denis
CV
,
Economopoulos
M
,
Wagner
DD
.
Localized reduction of atherosclerosis in von Willebrand factor-deficient mice
.
Blood
.
2001
;
98
(
5
):
1424
-
1428
.
21.
Theilmeier
G
,
Michiels
C
,
Spaepen
E
, et al
.
Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia
.
Blood
.
2002
;
99
(
12
):
4486
-
4493
.
22.
Shim
CY
,
Liu
YN
,
Atkinson
T
, et al
.
Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis
.
Circ Cardiovasc Imaging
.
2015
;
8
(
7
):
e002765
.
23.
Moccetti
F
,
Brown
E
,
Xie
A
, et al
.
Myocardial infarction produces sustained proinflammatory endothelial activation in remote arteries
.
J Am Coll Cardiol
.
2018
;
72
(
9
):
1015
-
1026
.
24.
Ozawa
K
,
Muller
MA
,
Varlamov
O
, et al
.
Proteolysis of von Willebrand factor influences inflammatory endothelial activation and vascular compliance in atherosclerosis
.
JACC Basic Transl Sci
.
2020
;
5
(
10
):
1017
-
1028
.
25.
Swank
RL
,
Cullen
CF
.
Circulatory changes in the hamster's cheek pouch associated with alimentary lipemia
.
Proc Soc Exp Biol Med
.
1953
;
82
(
3
):
381
-
384
.
26.
Golino
P
,
Maroko
PR
,
Carew
TE
.
The effect of acute hypercholesterolemia on myocardial infarct size and the no-reflow phenomenon during coronary occlusion-reperfusion
.
Circulation
.
1987
;
75
(
1
):
292
-
298
.
27.
Chen
J
,
Fu
X
,
Wang
Y
, et al
.
Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13
.
Blood
.
2010
;
115
(
3
):
706
-
712
.
28.
Chen
J
,
Reheman
A
,
Gushiken
FC
, et al
.
N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice
.
J Clin Invest
.
2011
;
121
(
2
):
593
-
603
.
29.
Henderson
CM
,
Vaisar
T
,
Hoofnagle
AN
.
Isolating and quantifying plasma HDL proteins by sequential density gradient ultracentrifugation and targeted proteomics
.
Methods Mol Biol
.
2016
;
1410
:
105
-
120
.
30.
Herbig
BA
,
Diamond
SL
.
Pathological von Willebrand factor fibers resist tissue plasminogen activator and ADAMTS13 while promoting the contact pathway and shear-induced platelet activation
.
J Thromb Haemost
.
2015
;
13
(
9
):
1699
-
1708
.
31.
Wei
K
,
Jayaweera
AR
,
Firoozan
S
,
Linka
A
,
Skyba
DM
,
Kaul
S
.
Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion
.
Circulation
.
1998
;
97
(
5
):
473
-
483
.
32.
Ozawa
K
,
Packwood
W
,
Varlamov
O
, et al
.
Molecular imaging of VWF (von Willebrand factor) and platelet adhesion in postischemic impaired microvascular reflow
.
Circ Cardiovasc Imaging
.
2018
;
11
(
11
):
e007913
.
33.
Adili
R
,
Holinstat
M
.
Formation and resolution of pial microvascular thrombosis in a mouse model of thrombotic thrombocytopenic purpura
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
9
):
1817
-
1830
.
34.
Schiviz
A
,
Wuersch
K
,
Piskernik
C
, et al
.
A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13
.
Blood
.
2012
;
119
(
25
):
6128
-
6135
.
35.
Gandhi
C
,
Khan
MM
,
Lentz
SR
,
Chauhan
AK
.
ADAMTS13 reduces vascular inflammation and the development of early atherosclerosis in mice
.
Blood
.
2012
;
119
(
10
):
2385
-
2391
.
36.
Jin
SY
,
Tohyama
J
,
Bauer
RC
,
Cao
NN
,
Rader
DJ
,
Zheng
XL
.
Genetic ablation of Adamts13 gene dramatically accelerates the formation of early atherosclerosis in a murine model
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
8
):
1817
-
1823
.
37.
Gandhi
C
,
Ahmad
A
,
Wilson
KM
,
Chauhan
AK
.
ADAMTS13 modulates atherosclerotic plaque progression in mice via a VWF-dependent mechanism
.
J Thromb Haemost
.
2014
;
12
(
2
):
255
-
260
.
38.
Doddapattar
P
,
Dhanesha
N
,
Chorawala
MR
, et al
.
Endothelial cell-derived von Willebrand factor, but not platelet-derived, promotes atherosclerosis in apolipoprotein E-deficient mice
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
3
):
520
-
528
.
39.
Brown
E
,
Ozawa
K
,
Moccetti
F
, et al
.
Arterial platelet adhesion in atherosclerosis-prone arteries of obese, insulin-resistant nonhuman primates
.
J Am Heart Assoc
.
2021
;
10
(
9
):
e019413
.
40.
Michels
A
,
Lillicrap
D
,
Yacob
M
.
Role of von Willebrand factor in venous thromboembolic disease
.
JVS Vasc Sci
.
2022
;
3
:
17
-
29
.
41.
Lin
L
,
Luo
P
,
Yang
M
,
Wang
J
,
Hou
W
,
Xu
P
.
A bidirectional Mendelian randomized study of classical blood lipids and venous thrombosis
.
Sci Rep
.
2023
;
13
(
1
):
3904
.
42.
Wu
KK
,
Hall
ER
,
Rossi
EC
,
Papp
AC
.
Serum prostacyclin binding defects in thrombotic thrombocytopenic purpura
.
J Clin Invest
.
1985
;
75
(
1
):
168
-
174
.
43.
Yui
Y
,
Aoyama
T
,
Morishita
H
,
Takahashi
M
,
Takatsu
Y
,
Kawai
C
.
Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (Apo A-I). A novel function of Apo A-I
.
J Clin Invest
.
1988
;
82
(
3
):
803
-
807
.
44.
Salvi
F
,
Baraldi
A
,
Allione
B
,
Santi
R
,
Inverardi
D
,
Levis
A
.
Unsuccessful treatment of resistant thrombotic thrombocytopenic purpura with prostacyclin
.
Haematologica
.
2000
;
85
(
12
):
1329
-
1330
.
45.
Pascreau
T
,
Zia-Chahabi
S
,
Zuber
B
,
Tcherakian
C
,
Farfour
E
,
Vasse
M
.
ADAMTS 13 deficiency is associated with abnormal distribution of von Willebrand factor multimers in patients with COVID-19
.
Thromb Res
.
2021
;
204
:
138
-
140
.
46.
Lammle
B
,
Rossmann
H
.
Invited commentary to: ADAMTS13 deficiency is associated with abnormal distribution of von Willebrand factor multimers in patients with COVID-19 by Tiffany Pascreau et al. letter to the editors-in-chief, thrombosis research
.
Thromb Res
.
2021
;
204
:
141
-
142
.
47.
Gao
YD
,
Ding
M
,
Dong
X
, et al
.
Risk factors for severe and critically ill COVID-19 patients: a review
.
Allergy
.
2021
;
76
(
2
):
428
-
455
.
48.
Masana
L
,
Correig
E
,
Ibarretxe
D
, et al
.
Low HDL and high triglycerides predict COVID-19 severity
.
Sci Rep
.
2021
;
11
(
1
):
7217
.
49.
Swank
RL
,
Lerstad
O
,
Strom
A
,
Backer
J
.
Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition
.
N Engl J Med
.
1952
;
246
(
19
):
722
-
728
.
50.
Cullen
CF
,
Swank
RL
.
Intravascular aggregation and adhesiveness of the blood elements associated with alimentary lipemia and injections of large molecular substances; effect on blood-brain barrier
.
Circulation
.
1954
;
9
(
3
):
335
-
346
.
51.
Swank
RL
,
Nakamura
H
.
Oxygen availability in brain tissues after lipid meals
.
Am J Physiol
.
1960
;
198
:
217
-
220
.
52.
Swank
RL
,
Goodwin
J
.
Review of MS patient survival on a Swank low saturated fat diet
.
Nutrition
.
2003
;
19
(
2
):
161
-
162
.
53.
Stoiloudis
P
,
Kesidou
E
,
Bakirtzis
C
, et al
.
The role of diet and interventions on multiple sclerosis: a review
.
Nutrients
.
2022
;
14
(
6
):
1150
.
54.
Wu
MD
,
Moccetti
F
,
Brown
E
, et al
.
Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia
.
JACC Cardiovasc Imaging
.
2019
;
12
(
8 Pt 1
):
1430
-
1440
.
55.
Golino
P
,
Maroko
PR
,
Carew
TE
.
Efficacy of platelet depletion in counteracting the detrimental effect of acute hypercholesterolemia on infarct size and the no-reflow phenomenon in rabbits undergoing coronary artery occlusion-reperfusion
.
Circulation
.
1987
;
76
(
1
):
173
-
180
.
56.
Ozawa
K
,
Muller
MA
,
Varlamov
O
, et al
.
Reduced proteolytic cleavage of von Willebrand factor leads to aortic valve stenosis and load-dependent ventricular remodeling
.
JACC Basic Transl Sci
.
2022
;
7
(
7
):
642
-
655
.
57.
Cao
W
,
Abdelgawwad
MS
,
Li
J
,
Zheng
XL
.
Apolipoprotein B100/low-density lipoprotein regulates proteolysis and functions of von Willebrand factor under arterial shear
.
Thromb Haemost
.
2019
;
119
(
12
):
1933
-
1946
.
58.
Khoo
JC
,
Miller
E
,
McLoughlin
P
,
Steinberg
D
.
Prevention of low density lipoprotein aggregation by high density lipoprotein or apolipoprotein A-I
.
J Lipid Res
.
1990
;
31
(
4
):
645
-
652
.
59.
Zhang
C
,
Kelkar
A
,
Neelamegham
S
.
von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain
.
Blood Adv
.
2019
;
3
(
7
):
957
-
968
.
60.
Colombatti
A
,
Bonaldo
P
,
Doliana
R
.
Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins
.
Matrix
.
1993
;
13
(
4
):
297
-
306
.
61.
Zhang
Q
,
Zhou
YF
,
Zhang
CZ
,
Zhang
X
,
Lu
C
,
Springer
TA
.
Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
23
):
9226
-
9231
.
62.
Martin
C
,
Morales
LD
,
Cruz
MA
.
Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha
.
J Thromb Haemost
.
2007
;
5
(
7
):
1363
-
1370
.
You do not currently have access to this content.
Sign in via your Institution