• Loss of miR-144/451 in erythroid cells of Hbbth3/+ mice alleviates β-thalassemia by stimulating ULK1-dependent autophagy of free α-globin.

  • Loss of miR-144/451 stimulates ULK1 by activating the LKB1/AMPK axis and inducing erythroblast iron restriction.

Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder β-thalassemia, mutations in the β-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51–like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates β-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates β-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate–activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in β-thalassemia. The beneficial effects of miR-144/451 loss in β-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of β-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.

1.
Khandros
E
,
Thom
CS
,
D'Souza
J
,
Weiss
MJ
.
Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia
.
Blood
.
2012
. ;
119
(
22
):
5265
-
5275
.
2.
Khandros
E
,
Weiss
MJ
.
Protein quality control during erythropoiesis and hemoglobin synthesis
.
Hematol Oncol Clin North Am
.
2010
. ;
24
(
6
):
1071
-
1088
.
3.
Wickramasinghe
S
,
Lee
M
.
Evidence that the ubiquitin proteolytic pathway is involved in the degradation of precipitated globin chains in thalassaemia
.
Br J Haematol
.
1998
. ;
101
(
2
):
245
-
250
.
4.
Shaeffer
JR
,
Cohen
RE
.
Ubiquitin aldehyde increases adenosine triphosphate–dependent proteolysis of hemoglobin α-subunits in β-thalassemic hemolysates
.
Blood
.
1997
. ;
90
(
3
):
1300
-
1308
.
5.
Shaeffer
JR
,
Cohen
RE
.
Differential effects of ubiquitin aldehyde on ubiquitin and ATP-dependent protein degradation
.
Biochemistry
.
1996
. ;
35
(
33
):
10886
-
10893
.
6.
Shaeffer
JR
,
Kania
MA
.
Degradation of monoubiquitinated alpha-globin by 26S proteasomes
.
Biochemistry
.
1995
. ;
34
(
12
):
4015
-
4021
.
7.
Shaeffer
JR
.
Monoubiquitinated alpha globin is an intermediate in the ATP-dependent proteolysis of alpha globin
.
J Biol Chem
.
1994
. ;
269
(
35
):
22205
-
22210
.
8.
Shaeffer
JR
.
Heterogeneity in the structure of the ubiquitin conjugates of human alpha globin
.
J Biol Chem
.
1994
. ;
269
(
47
):
29530
-
29536
.
9.
Lechauve
C
,
Keith
J
,
Khandros
E
, et al
.
The autophagy-activating kinase ULK1 mediates clearance of free alpha-globin in beta-thalassemia
.
Sci Transl Med
.
2019
. ;
11
(
506
):
eaav4881
.
10.
Kim
J
,
Kundu
M
,
Viollet
B
,
Guan
K-L
.
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
.
Nat Cell Biol
.
2011
. ;
13
(
2
):
132
-
141
.
11.
Mizushima
N
.
The role of the Atg1/ULK1 complex in autophagy regulation
.
Curr Opin Cell Biol
.
2010
. ;
22
(
2
):
132
-
139
.
12.
Zhang
X
,
Campreciós
G
,
Rimmelé
P
, et al
.
FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis
.
Am J Hematol
.
2014
. ;
89
(
10
):
954
-
963
.
13.
Bartel
DP
.
Metazoan micrornas
.
Cell
.
2018
. ;
173
(
1
):
20
-
51
.
14.
Dore
LC
,
Amigo
JD
,
Dos Santos
CO
, et al
.
A GATA-1-regulated microRNA locus essential for erythropoiesis
.
Proc Natl Acad Sci U S A
.
2008
. ;
105
(
9
):
3333
-
3338
.
15.
Patrick
DM
,
Zhang
CC
,
Tao
Y
, et al
.
Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ
.
Genes Dev
.
2010
. ;
24
(
15
):
1614
-
1619
.
16.
Rasmussen
KD
,
Simmini
S
,
Abreu-Goodger
C
, et al
.
The miR-144/451 locus is required for erythroid homeostasis
.
J Exp Med
.
2010
. ;
207
(
7
):
1351
-
1358
.
17.
Yu
D
,
dos Santos
CO
,
Zhao
G
, et al
.
miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ
.
Genes Dev
.
2010
. ;
24
(
15
):
1620
-
1633
.
18.
Xu
P
,
Palmer
LE
,
Lechauve
C
, et al
.
Regulation of gene expression by miR-144/451 during mouse erythropoiesis
.
Blood
.
2019
. ;
133
(
23
):
2518
-
2528
.
19.
Wang
T
,
Gentzke
AS
,
Creamer
MR
, et al
.
miR-144/451 in hematopoiesis and beyond
.
ExRNA
.
2019
. ;
68
(
12
):
1
-
22
.
20.
Fang
X
,
Shen
F
,
Lechauve
C
, et al
.
miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia
.
Haematologica
.
2018
. ;
103
(
3
):
406
-
416
.
21.
Hawley
SA
,
Boudeau
J
,
Reid
JL
, et al
.
Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade
.
J Biol
.
2003
. ;
2
(
4
):
28
.
22.
Shackelford
DB
,
Shaw
RJ
.
The LKB1–AMPK pathway: metabolism and growth control in tumour suppression
.
Nat Rev Cancer
.
2009
. ;
9
(
8
):
563
-
575
.
23.
Shaw
RJ
,
Kosmatka
M
,
Bardeesy
N
, et al
.
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
.
Proc Natl Acad Sci U S A
.
2004
. ;
101
(
10
):
3329
-
3335
.
24.
Ganley
IG
,
Lam
DH
,
Wang
J
,
Ding
X
,
Chen
S
,
Jiang
X
.
ULK1· ATG13· FIP200 complex mediates mTOR signaling and is essential for autophagy
.
J Biol Chem
.
2009
. ;
284
(
18
):
12297
-
12305
.
25.
Laplante
M
,
Sabatini
DM
.
mTOR signaling in growth control and disease
.
Cell
.
2012
. ;
149
(
2
):
274
-
293
.
26.
Liu
GY
,
Sabatini
DM
.
mTOR at the nexus of nutrition, growth, ageing and disease
.
Nat Rev Mol Cell Biol
.
2020
. ;
21
(
4
):
183
-
203
.
27.
Oikonomidou
PR
,
Casu
C
,
Rivella
S
.
New strategies to target iron metabolism for the treatment of beta thalassemia
.
Ann N Y Acad Sci
.
2016
. ;
1368
(
1
):
162
-
168
.
28.
Camaschella
C
,
Nai
A
.
Ineffective erythropoiesis and regulation of iron status in iron loading anaemias
.
Br J Haematol
.
2016
. ;
172
(
4
):
512
-
523
.
29.
Kundu
M
,
Lindsten
T
,
Yang
C-Y
, et al
.
Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
.
Blood
.
2008
. ;
112
(
4
):
1493
-
1502
.
30.
Connelly
JP
,
Pruett-Miller
SM
.
CRIS. py: a versatile and high-throughput analysis program for CRISPR-based genome editing
.
Sci Rep
.
2019
. ;
9
(
1
):
4194
.
31.
Yang
B
,
Kirby
S
,
Lewis
J
,
Detloff
PJ
,
Maeda
N
,
Smithies
O
.
A mouse model for beta 0-thalassemia
.
Proc Natl Acad Sci U S A
.
1995
. ;
92
(
25
):
11608
-
11612
.
32.
Advani
R
,
Rubin
E
,
Mohandas
N
,
Schrier
S
.
Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia
.
Blood
.
1992
. ;
79
(
4
):
1064
-
1067
.
33.
Zhang
S
,
Su
Y
,
Ding
K
, et al
.
HRI coordinates translation by eIF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency
.
Blood
.
2018
. ;
265
(
4
):
450
-
455
.
34.
Zhao
J
,
Zhai
B
,
Gygi
SP
,
Goldberg
AL
.
mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
.
Proc Natl Acad Sci U S A
.
2015
. ;
112
(
52
):
15790
-
15797
.
35.
Mettananda
S
,
Gibbons
RJ
,
Higgs
DR
.
Understanding α-globin gene regulation and implications for the treatment of β-thalassemia
.
Ann N Y Acad Sci
.
2016
. ;
1368
(
1
):
16
-
24
.
36.
Sangokoya
C
,
Telen
MJ
,
Chi
JT
.
microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease
.
Blood
.
2010
. ;
116
(
20
):
4338
-
4348
.
37.
Srinoun
K
,
Sathirapongsasuti
N
,
Paiboonsukwong
K
,
Sretrirutchai
S
,
Wongchanchailert
M
,
Fucharoen
S
.
miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2
.
Ann Hematol
.
2019
. ;
98
(
9
):
2045
-
2052
.
38.
Chung
J
,
Bauer
DE
,
Ghamari
A
, et al
.
The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability
.
Sci Signal
.
2015
. ;
8
(
372
):
ra34
.
39.
Rivella
S
.
Ineffective erythropoiesis and thalassemias
.
Curr Opin Hematol
.
2009
. ;
16
(
3
):
187
-
194
.
40.
Knight
ZA
,
Schmidt
SF
,
Birsoy
K
,
Tan
K
,
Friedman
JM
.
A critical role for mTORC1 in erythropoiesis and anemia
.
Elife
.
2014
. ;
3
:
e01913
.
41.
Gupta
R
,
Musallam
KM
,
Taher
AT
,
Rivella
S
.
Ineffective erythropoiesis: anemia and iron overload
.
Hematol Oncol Clin North Am
.
2018
. ;
32
(
2
):
213
-
221
.
42.
Jahng
JWS
,
Alsaadi
RM
,
Palanivel
R
, et al
.
Iron overload inhibits late stage autophagic flux leading to insulin resistance
.
EMBO Rep
.
2019
. ;
20
(
10
):
e47911
.
43.
Shang
C
,
Zhou
H
,
Liu
W
,
Shen
T
,
Luo
Y
,
Huang
S
.
Iron chelation inhibits mTORC1 signaling involving activation of AMPK and REDD1/Bnip3 pathways
.
Oncogene
.
2020
. ;
39
(
29
):
5201
-
5213
.
44.
Watson
A
,
Lipina
C
,
McArdle
HJ
,
Taylor
PM
,
Hundal
HS
.
Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1
.
Cell Signal
.
2016
. ;
28
(
5
):
412
-
424
.
45.
Levy
JE
,
Jin
O
,
Fujiwara
Y
,
Kuo
F
,
Andrews
NC
.
Transferrin receptor is necessary for development of erythrocytes and the nervous system
.
Nat Genet
.
1999
. ;
21
(
4
):
396
-
399
.
46.
Li
H
,
Choesang
T
,
Bao
W
, et al
.
Decreasing TfR1 expression reverses anemia and hepcidin suppression in beta-thalassemic mice
.
Blood
.
2017
. ;
129
(
11
):
1514
-
1526
.
47.
Bayeva
M
,
Khechaduri
A
,
Puig
S
, et al
.
mTOR regulates cellular iron homeostasis through tristetraprolin
.
Cell Metabol
.
2012
. ;
16
(
5
):
645
-
657
.
48.
Ndong
M
,
Kazami
M
,
Suzuki
T
, et al
.
Iron deficiency down-regulates the Akt/TSC1-TSC2/mammalian target of Rapamycin signaling pathway in rats and in COS-1 cells
.
Nutr Res
.
2009
. ;
29
(
9
):
640
-
647
.
49.
Mayle
KM
,
Le
AM
,
Kamei
DT
.
The intracellular trafficking pathway of transferrin
.
Biochim Biophys Acta
.
2012
. ;
1820
(
3
):
264
-
281
.
50.
Junutula
JR
,
De Maziere
AM
,
Peden
AA
, et al
.
Rab14 is involved in membrane trafficking between the Golgi complex and endosomes
.
Mol Biol Cell
.
2004
. ;
15
(
5
):
2218
-
2229
.
51.
Kim
M
,
Tan
YS
,
Cheng
WC
,
Kingsbury
TJ
,
Heimfeld
S
,
Civin
CI
.
MIR144 and MIR451 regulate human erythropoiesis via RAB14
.
Br J Haematol
.
2015
. ;
168
(
4
):
583
-
597
.
52.
Mendell
JT
,
Olson
EN
.
MicroRNAs in stress signaling and human disease
.
Cell
.
2012
. ;
148
(
6
):
1172
-
1187
.
53.
Ansari
KI
,
Ogawa
D
,
Rooj
AK
, et al
.
Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor
.
Cell Rep
.
2015
. ;
11
(
6
):
902
-
909
.
54.
Godlewski
J
,
Nowicki
MO
,
Bronisz
A
, et al
.
MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells
.
Mol Cell
.
2010
. ;
37
(
5
):
620
-
632
.
55.
Zhang
L
,
Ouyang
L
,
Guo
Y
,
Zhang
J
,
Liu
B
.
UNC-51-like kinase 1: from an autophagic initiator to multifunctional drug target
.
J Med Chem
.
2018
. ;
61
(
15
):
6491
-
6500
.
56.
Chen
Y
,
Zhou
X
.
Research progress of mTOR inhibitors
.
Eur J Med Chem
.
2020
. ;
208
:
112820
.
57.
Kim
J
,
Yang
G
,
Kim
Y
,
Kim
J
,
Ha
J
.
AMPK activators: mechanisms of action and physiological activities
.
Exp Mol Med
.
2016
. ;
48
(
4
):
e224
.
You do not currently have access to this content.
Sign in via your Institution