• Molecular mechanism underlying autoantibody-mediated inhibition of ADAMTS13 activity in iTTP is not fully understood.

  • We found that binding of human antispacer antibody to ADAMTS13 results in conformational changes in its catalytic domain.

Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G–type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.

1.
Kremer Hovinga
JA
,
Lammle
B
.
Role of ADAMTS13 in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura
.
Hematology Am Soc Hematol Educ Program
.
2012
;
2012
:
610
-
616
.
2.
Lian
EC
.
Pathogenesis of thrombotic thrombocytopenic purpura: ADAMTS13 deficiency and beyond
.
Semin Thromb Hemost
.
2005
;
31
(
6
):
625
-
632
.
3.
Hrdinova
J
,
D'Angelo
S
,
Graca
NAG
, et al
.
Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: interplay between genes and environmental triggers
.
Haematologica
.
2021
;
106
(
3
):
924
.
4.
Zheng
XL
.
Structure-function and regulation of ADAMTS-13 protease
.
J Thromb Haemost
.
2013
;
11 suppl 1
(
0 1
):
11
-
23
.
5.
Zheng
XL
.
ADAMTS13 and von Willebrand factor in thrombotic thrombocytopenic purpura
.
Annu Rev Med
.
2015
;
66
:
211
-
225
.
6.
Roose
E
,
Vidarsson
G
,
Kangro
K
, et al
.
Anti-ADAMTS13 autoantibodies against cryptic epitopes in immune-mediated thrombotic thrombocytopenic purpura
.
Thromb Haemost
.
2018
;
118
(
10
):
1729
-
1742
.
7.
Ostertag
EM
,
Kacir
S
,
Thiboutot
M
, et al
.
ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 1. Structural and functional characterization in vitro
.
Transfusion
.
2016
;
56
(
7
):
1763
-
1774
.
8.
Thomas
MR
,
de Groot
R
,
Scully
MA
,
Crawley
JT
.
Pathogenicity of anti-ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura
.
EBioMedicine
.
2015
;
2
(
8
):
942
-
952
.
9.
Igari
A
,
Nakagawa
T
,
Moriki
T
, et al
.
Identification of epitopes on ADAMTS13 recognized by a panel of monoclonal antibodies with functional or non-functional effects on catalytic activity
.
Thromb Res
.
2012
;
130
(
3
):
e79
-
83
.
10.
Yamaguchi
Y
,
Moriki
T
,
Igari
A
, et al
.
Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura
.
Thromb Res
.
2011
;
128
(
2
):
169
-
173
.
11.
Pos
W
,
Crawley
JT
,
Fijnheer
R
,
Voorberg
J
,
Lane
DA
,
Luken
BM
.
An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF
.
Blood
.
2010
;
115
(
8
):
1640
-
1649
.
12.
Zheng
XL
,
Wu
HM
,
Shang
D
, et al
.
Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura
.
Haematologica
.
2010
;
95
(
9
):
1555
-
1562
.
13.
Velasquez Pereira
LC
,
Roose
E
,
Graca
NAG
, et al
.
Immunogenic hotspots in the spacer domain of ADAMTS13 in immune-mediated thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2021
;
19
(
2
):
478
-
488
.
14.
Kangro
K
,
Roose
E
,
Schelpe
AS
, et al
.
Generation and validation of small ADAMTS13 fragments for epitope mapping of anti-ADAMTS13 autoantibodies in immune-mediated thrombotic thrombocytopenic purpura
.
Res Pract Thromb Haemost
.
2020
;
4
(
5
):
918
-
930
.
15.
Zheng
XL
,
Vesely
SK
,
Cataland
SR
, et al
.
ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2020
;
18
(
10
):
2486
-
2495
.
16.
Tersteeg
C
,
Verhenne
S
,
Roose
E
, et al
.
ADAMTS13 and anti-ADAMTS13 autoantibodies in thrombotic thrombocytopenic purpura - current perspectives and new treatment strategies
.
Expert Rev Hematol
.
2016
;
9
(
2
):
209
-
221
.
17.
Phadke
M
,
Ozgun
A
,
Eroglu
Z
,
Smalley
KSM
.
Melanoma brain metastases: biological basis and novel therapeutic strategies
.
Exp Dermatol
.
2022
;
31
(
1
):
31
-
42
.
18.
Nakashima
MO
,
Zhang
X
,
Rogers
HJ
, et al
.
Validation of a panel of ADAMTS13 assays for diagnosis of thrombotic thrombocytopenic purpura: activity, functional inhibitor, and autoantibody test
.
Int J Lab Hematol
.
2016
;
38
(
5
):
550
-
559
.
19.
Smock
KJ
.
ADAMTS13 testing update: focus on laboratory aspects of difficult thrombotic thrombocytopenic purpura diagnoses and effects of new therapies
.
Int J Lab Hematol
.
2021
;
43
(
suppl 1
):
103
-
108
.
20.
Schelpe
AS
,
Petri
A
,
Roose
E
, et al
.
Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function
.
Blood Adv
.
2020
;
4
(
6
):
1072
-
1080
.
21.
Halkidis
K
,
Siegel
DL
,
Zheng
XL
.
A human monoclonal antibody against the distal carboxyl terminus of ADAMTS-13 modulates its susceptibility to an inhibitor in thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2021
;
19
(
8
):
1888
-
1895
.
22.
Cornish-Bowden
A
,
Cardenas
ML
.
Specificity of non-Michaelis-Menten enzymes: necessary information for analyzing metabolic pathways
.
J Phys Chem B
.
2010
;
114
(
49
):
16209
-
16213
.
23.
Anderson
VE
.
Multiple alternative substrate kinetics
.
Biochim Biophys Acta
.
2015
;
1854
(
11
):
1729
-
1736
.
24.
Casina
VC
,
Hu
W
,
Mao
JH
, et al
.
High-resolution epitope mapping by HX MS reveals the pathogenic mechanism and a possible therapy for autoimmune TTP syndrome
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
31
):
9620
-
9625
.
25.
Ostertag
EM
,
Bdeir
K
,
Kacir
S
, et al
.
ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 2. Pathogenicity in an animal model
.
Transfusion
.
2016
;
56
(
7
):
1775
-
1785
.
26.
Kurien
BT
,
Scofield
RH
.
Heat mediated quick Coomassie blue protein staining and destaining of SDS-PAGE gels
.
Indian J Biochem Biophys
.
1998
;
35
(
6
):
385
-
389
.
27.
Korotzer
JL
,
Bergquist
LM
,
Searcy
RL
.
Use of cellulose acetate and Ponceau S for electrophoretic serum protein analysis
.
Am J Med Technol
.
1961
;
27
:
197
-
203
.
28.
Ai
J
,
Smith
P
,
Wang
S
,
Zhang
P
,
Zheng
XL
.
The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for cleavage of von Willebrand factor
.
J Biol Chem
.
2005
;
280
(
33
):
29428
-
29434
.
29.
Muia
J
,
Gao
W
,
Haberichter
SL
, et al
.
An optimized fluorogenic ADAMTS13 assay with increased sensitivity for the investigation of patients with thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2013
;
11
(
8
):
1511
-
1518
.
30.
Kokame
K
,
Nobe
Y
,
Kokubo
Y
,
Okayama
A
,
Miyata
T
.
FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay
.
Br J Haematol
.
2005
;
129
(
1
):
93
-
100
.
31.
Rottensteiner
H
,
Seyfried
BK
,
Kaufmann
S
, et al
.
Identification of cysteine thiol-based linkages in ADAMTS13 in support of a non-proteolytic regulation of von Willebrand factor
.
J Thromb Haemost
.
2019
;
17
(
12
):
2099
-
2109
.
32.
Nelson
DL
,
Cox
MM
. Lehninger Principles of Biochemistry. 5th ed.
W.H. Freeman
;
2008
.
33.
Kan
ZY
,
Ye
X
,
Skinner
JJ
,
Mayne
L
,
Englander
SW
.
ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis
.
Anal Chem
.
2019
;
91
(
11
):
7474
-
7481
.
34.
Kim
HY
,
Wang
X
,
Wahlberg
B
,
Edwards
WB
.
Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging
.
Bioconjug Chem
.
2014
;
25
(
7
):
1311
-
1322
.
35.
Robinson
MK
,
Hodge
KM
,
Horak
E
, et al
.
Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro
.
Br J Cancer
.
2008
;
99
(
9
):
1415
-
1425
.
36.
Tadokoro
T
,
Jahan
ML
,
Ito
Y
, et al
.
Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus
.
FEBS J
.
2020
;
287
(
1
):
145
-
159
.
37.
Muia
J
,
Zhu
J
,
Gupta
G
, et al
.
Allosteric activation of ADAMTS13 by von Willebrand factor
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
52
):
18584
-
18589
.
38.
Di Stasio
E
,
Lancellotti
S
,
Peyvandi
F
,
Palla
R
,
Mannucci
PM
,
De Cristofaro
R
.
Mechanistic studies on ADAMTS13 catalysis
.
Biophys J
.
2008
;
95
(
5
):
2450
-
2461
.
39.
Mayne
L
.
Hydrogen exchange mass spectrometry
.
Methods Enzymol
.
2016
;
566
:
335
-
356
.
40.
Del Amo-Maestro
L
,
Sagar
A
,
Pompach
P
, et al
.
An integrative structural biology analysis of von Willebrand factor binding and processing by ADAMTS-13 in solution
.
J Mol Biol
.
2021
;
433
(
13
):
166954
.
41.
Pos
W
,
Sorvillo
N
,
Fijnheer
R
, et al
.
Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain
.
Haematologica
.
2011
;
96
(
11
):
1670
-
1677
.
42.
Jian
C
,
Xiao
J
,
Gong
L
, et al
.
Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura
.
Blood
.
2012
;
119
(
16
):
3836
-
3843
.
43.
Xiao
J
,
Jin
SY
,
Xue
J
,
Sorvillo
N
,
Voorberg
J
,
Zheng
XL
.
Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis
.
Arterioscler Thromb Vasc Biol
.
2011
;
31
(
10
):
2261
-
2269
.
44.
Jin
SY
,
Skipwith
CG
,
Zheng
XL
.
Amino acid residues Arg(659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor
.
Blood
.
2010
;
115
(
11
):
2300
-
2310
.
45.
Geist
N
,
Nagel
F
,
Delcea
M
.
Molecular interplay of ADAMTS13-MDTCS and von Willebrand factor-A2: deepened insights from extensive atomistic simulations
.
J Biomol Struct Dyn
.
2022
:
1
-
14
.
46.
Gao
W
,
Anderson
PJ
,
Sadler
JE
.
Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity
.
Blood
.
2008
;
112
(
5
):
1713
-
1719
.
47.
Pillai
VG
,
Zheng
XL
.
Hydrogen−deuterium exchange plus mass spectrometry reveals a novel mechanism underlying allosteric regulation of ADAMTS13 activity
.
Res Pract Thromb Haemost
.
2023
;
7
:
1
-
13
.
48.
Xiang
Y
,
de Groot
R
,
Crawley
JT
,
Lane
DA
.
Mechanism of von Willebrand factor scissile bond cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13)
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
28
):
11602
-
11607
.
49.
Crawley
JT
,
de Groot
R
,
Xiang
Y
,
Luken
BM
,
Lane
DA
.
Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor
.
Blood
.
2011
;
118
(
12
):
3212
-
3221
.
50.
Petri
A
,
Kim
HJ
,
Xu
Y
, et al
.
Crystal structure and substrate-induced activation of ADAMTS13
.
Nat Commun
.
2019
;
10
(
1
):
3781
.
51.
Ercig
B
,
Graca
NAG
,
Kangro
K
, et al
.
N-glycan-mediated shielding of ADAMTS13 prevents binding of pathogenic autoantibodies in immune-mediated TTP
.
Blood
.
2021
;
137
(
19
):
2694
-
2698
.
You do not currently have access to this content.
Sign in via your Institution