• Rpn10 plays a pivotal role in MM.

  • A novel Rpn10 inhibitor, SB, was identified via AlphaScreen.

PSMD4/Rpn10 is a subunit of the 19S proteasome unit that is involved with feeding target proteins into the catalytic machinery of the 26S proteasome. Because proteasome inhibition is a common therapeutic strategy in multiple myeloma (MM), we investigated Rpn10 and found that it is highly expressed in MM cells compared with normal plasma cells. Rpn10 levels inversely correlated with overall survival in patients with MM. Inducible knockout or knockdown of Rpn10 decreased MM cell viability both in vitro and in vivo by triggering the accumulation of polyubiquitinated proteins, cell cycle arrest, and apoptosis associated with the activation of caspases and unfolded protein response-related pathways. Proteomic analysis revealed that inhibiting Rpn10 increased autophagy, antigen presentation, and the activation of CD4+ T and natural killer cells. We developed an in vitro AlphaScreen binding assay for high-throughput screening and identified a novel Rpn10 inhibitor, SB699551 (SB). Treating MM cell lines, leukemic cell lines, and primary cells from patients with MM with SB decreased cell viability without affecting the viability of normal peripheral blood mononuclear cells. SB inhibited the proliferation of MM cells even in the presence of the tumor-promoting bone marrow milieu and overcame proteasome inhibitor (PI) resistance without blocking the 20S proteasome catalytic function or the 19S deubiquitinating activity. Rpn10 blockade by SB triggered MM cell death via similar pathways as the genetic strategy. In MM xenograft models, SB was well tolerated, inhibited tumor growth, and prolonged survival. Our data suggest that inhibiting Rpn10 will enhance cytotoxicity and overcome PI resistance in MM, providing the basis for further optimization studies of Rpn10 inhibitors for clinical application.

1.
Obeng
EA
,
Carlson
LM
,
Gutman
DM
, et al
.
Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
.
Blood
.
2006
;
107
(
12
):
4907
-
4916
.
2.
Bianchi
G
,
Oliva
L
,
Cascio
P
, et al
.
The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition
.
Blood
.
2009
;
113
(
13
):
3040
-
3049
.
3.
Kane
RC
,
Bross
PF
,
Farrell
AT
,
Pazdur
R
.
Velcade®: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy
.
Oncologist
.
2003
;
8
(
6
):
508
-
513
.
4.
Siegel
DS
,
Martin
T
,
Wang
M
, et al
.
A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma
.
Blood
.
2012
;
120
(
14
):
2817
-
2825
.
5.
Richardson
PGG
,
Barlogie
B
,
Berenson
J
, et al
.
Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma
.
Blood
.
2005
;
106
(
9
):
2977
-
2981
.
6.
Jagannath
S
,
Barlogie
B
,
Berenson
J
, et al
.
A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma
.
Br J Haematol
.
2004
;
127
(
2
):
165
-
172
.
7.
Lonial
S
,
Waller
EK
,
Richardson
PG
, et al
.
Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma
.
Blood
.
2005
;
106
(
12
):
3777
-
3784
.
8.
Adams
J
.
The proteasome: a suitable antineoplastic target
.
Nat Rev Cancer
.
2004
;
4
(
5
):
349
-
360
.
9.
Hershko
A
.
The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle
.
Cell Death Differ
.
2005
;
12
(
9
):
1191
-
1197
.
10.
Finley
D
.
Recognition and processing of ubiquitin-protein conjugates by the proteasome
.
Annu Rev Biochem
.
2009
;
78
:
477
-
513
.
11.
Deveraux
Q
,
Ustrell
V
,
Pickart
C
,
Rechsteiner
M
.
A 26 S protease subunit that binds ubiquitin conjugates
.
J Biol Chem
.
1994
;
269
(
10
):
7059
-
7061
.
12.
Husnjak
K
,
Elsasser
S
,
Zhang
N
, et al
.
Proteasome subunit Rpn13 is a novel ubiquitin receptor
.
Nature
.
2008
;
453
(
7194
):
481
-
488
.
13.
Schreiner
P
,
Chen
X
,
Husnjak
K
, et al
.
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
.
Nature
.
2008
;
453
(
7194
):
548
-
552
.
14.
Shi
Y
,
Chen
X
,
Elsasser
S
, et al
.
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
.
Science
.
2016, aad9421, 1-10
;
351
(
6275
).
15.
Chen
X
,
Ebelle
DL
,
Wright
BJ
, et al
.
Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome
.
J Mol Biol
.
2019
;
431
(
5
):
1
-
17
.
16.
Song
Y
,
Park
PMC
,
Wu
L
, et al
.
Development and preclinical validation of a novel covalent ubiquitin receptor Rpn13 degrader in multiple myeloma
.
Leukemia
.
2019
;
33
(
11
):
2685
-
2694
.
17.
Song
Y
,
Du
T
,
Ray
A
, et al
.
Identification of novel anti-tumor therapeutic target via proteomic characterization of ubiquitin receptor ADRM1/Rpn13
.
Blood Cancer J
.
2021
;
11
(
1
):
11
-
15
.
18.
Song
Y
,
Ray
A
,
Li
S
, et al
.
Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma
.
Leukemia
.
2016
;
30
(
9
):
1877
-
1886
.
19.
Soong
RS
,
Anchoori
RK
,
Roden
RBS
, et al
.
Bis-benzylidine piperidone RA190 treatment of hepatocellular carcinoma via binding RPN13 and inhibiting NF-κB signaling
.
BMC Cancer
.
2020
;
20
(
1
):
1
-
15
.
20.
Glickman
MH
,
Rubin
DM
,
Coux
O
, et al
.
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and elF3
.
Cell
.
1998
;
94
(
5
):
615
-
623
.
21.
Cundiff
MD
,
Hurley
CM
,
Wong
JD
, et al
.
Ubiquitin receptors are required for substrate-mediated activation of the proteasome’s unfolding ability
.
Sci Rep
.
2019
;
9
(
1
):
1
-
17
.
22.
Fejzo
MS
,
Anderson
L
,
Chen
HW
, et al
.
Proteasome ubiquitin receptor PSMD4 is an amplification target in breast cancer and may predict sensitivity to PARPi
.
Genes Chromosomes Cancer
.
2017
;
56
(
8
):
589
-
597
.
23.
Jiang
Z
,
Zhou
Q
,
Ge
C
, et al
.
Rpn10 promotes tumor progression by regulating hypoxia-inducible factor 1 alpha through the PTEN/Akt signaling pathway in hepatocellular carcinoma
.
Cancer Lett
.
2019
;
447
:
1
-
11
.
24.
Lin
P
,
Tsai
J
,
Wu
D
,
Huang
C
,
Lee
H
.
Cytoplasmic localization of Nrf2 promotes colorectal cancer with more aggressive tumors via upregulation of PSMD4
.
Free Radic Biol Med
.
2016
;
95
:
121
-
132
.
25.
Shaughnessy
JD
,
Qu
P
,
Usmani
S
, et al
.
Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3
.
Blood
.
2011
;
118
(
13
):
3512
-
3524
.
26.
Chauhan
D
,
Singh
A v
,
Brahmandam
M
, et al
.
Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target
.
Cancer Cell
.
2009
;
16
(
4
):
309
-
323
.
27.
Xu
H
,
Van Der Jeught
K
,
Zhou
Z
, et al
.
Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation
.
J Clin Invest
.
2021
;
131
(
10
):
1
-
15
.
28.
Kocaturk
NM
,
Gozuacik
D
.
Crosstalk between mammalian autophagy and the ubiquitin-proteasome system
.
Front Cell Dev Biol
.
2018
;
6
:
1
-
27
.
29.
Demishtein
A
,
Fraiberg
M
,
Berko
D
, et al
.
SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity
.
Autophagy
.
2017
;
13
(
10
):
1697
-
1708
.
30.
Klionsky
DJ
,
Abdelmohsen
K
,
Abe
A
, et al
.
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
.
Autophagy
.
2016
;
12
(
1
):
1
-
222
.
31.
Eskelinen
E-L
,
Illert
AL
,
Tanaka
Y
, et al
.
Role of LAMP-2 in lysosome biogenesis and autophagy
.
Mol Biol Cell
.
2002
;
13
(
9
):
3355
-
3368
.
32.
Mauvezin
C
,
Neufeld
TP
.
Bafilomycin A1 disrupts autophagic flux by inhibiting both
.
Autophagy
.
2015
;
11
(
8
):
1437
-
1438
.
33.
Crotzer
VL
,
Blum
JS
.
Autophagy and its role in MHC-mediated antigen presentation
.
J Immunol
.
2009
;
182
(
6
):
3335
-
3341
.
34.
Dengjel
J
,
Schoor
O
,
Fischer
R
, et al
.
Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
22
):
7922
-
7927
.
35.
Menéndez-Benito
V
,
Verhoef
LGGC
,
Masucci
MG
,
Dantuma
NP
.
Endoplasmic reticulum stress compromises the ubiquitin-proteasome system
.
Hum Mol Genet
.
2005
;
14
(
19
):
2787
-
2799
.
36.
Thomas
DR
,
Soffin
EM
,
Roberts
C
, et al
.
SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4′-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: evidence for an autoreceptor role
.
Neuropharmacology
.
2006
;
51
(
3
):
566
-
577
.
37.
Corbett
DF
,
Heightman
TD
,
Moss
SF
, et al
.
Discovery of a potent and selective 5-ht 5A receptor antagonist by high-throughput chemistry
.
.
2005
;
15
:
4014
-
4018
.
38.
Chauhan
D
,
Uchiyama
H
,
Akbarali
Y
, et al
.
Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB
.
Blood
.
1996
;
87
(
3
):
1104
-
1112
.
39.
Ray
A
,
Das
DS
,
Song
Y
, et al
.
Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells
.
Leukemia
.
2015
;
29
(
6
):
1441
-
1444
.
40.
Chauhan
D
,
Catley
L
,
Li
G
, et al
.
A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib
.
Cancer Cell
.
2005
;
8
(
5
):
407
-
419
.
41.
Chauhan
D
,
Tian
Z
,
Nicholson
B
, et al
.
A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance
.
Cancer Cell
.
2012
;
22
(
3
):
345
-
358
.
42.
Chauhan
D
,
Singh
A V
,
Ciccarelli
B
, et al
.
Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma
.
Blood
.
2010
;
115
(
4
):
834
-
845
.
43.
Tian
Z
,
D’Arcy
P
,
Wang
X
, et al
.
A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance
.
Blood
.
2014
;
123
(
5
):
706
-
716
.
44.
Besse
A
,
Stolze
SC
,
Rasche
L
, et al
.
Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma
.
Leukemia
.
2018
;
32
(
2
):
391
-
401
.
45.
Ma
AG
,
Yu
LM
,
Zhao
H
, et al
.
PSMD4 regulates the malignancy of esophageal cancer cells by suppressing endoplasmic reticulum stress
.
Kaohsiung J Med Sci
.
2019
;
35
(
10
):
591
-
597
.
46.
de Cárcer
G
.
The mitotic cancer target polo-like kinase 1: oncogene or tumor suppressor?
.
Genes (Basel)
.
2019
;
10
(
3
):
1
-
15
.
47.
Jung
Y
,
Kraikivski
P
,
Shafiekhani
S
,
Terhune
SS
,
Dash
RK
.
Crosstalk between Plk1, p53, cell cycle, and G2/M DNA damage checkpoint regulation in cancer: computational modeling and analysis
.
NPJ Syst Biol Appl
.
2021
;
7
(
1
):
1
-
13
.
48.
Du
T
,
Song
Y
,
Ray
A
,
Chauhan
D
,
Anderson
KC
.
Proteomic analysis identifies mechanism(s) of overcoming bortezomib resistance via targeting ubiquitin receptor Rpn13
.
Leukemia
.
2020
;
35
(
2
):
550
-
561
.
49.
Nerini-Molteni
S
,
Ferrarini
M
,
Cozza
S
,
Caligaris-Cappio
F
,
Sitia
R
.
Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib
.
Br J Haematol
.
2008
;
141
(
4
):
494
-
503
.
50.
Jang
HH
.
Regulation of protein degradation by proteasomes in cancer
.
J Cancer Prev
.
2018
;
23
(
4
):
153
-
161
.
51.
Shi
J
,
Tricot
GJ
,
Garg
TK
, et al
.
Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma
.
Blood
.
2008
;
111
(
3
):
1309
-
1317
.
52.
Dannull
J
,
Lesher
DT
,
Holzknecht
R
, et al
.
Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity
.
Blood
.
2007
;
110
(
13
):
4341
-
4350
.
53.
Gulla
A
,
Morelli
E
,
Samur
MK
, et al
.
bortezomib induces anti–multiple myeloma immune response mediated by cGAS/STING pathway activation
.
Blood Cancer Discov
.
2021
;
2
(
5
):
468
-
483
.
You do not currently have access to this content.
Sign in via your Institution