• Cumulative recording of proliferation and differentiation in situ shows that primitive HSCs are not activated by inflammation or blood loss.

Hematopoietic stem cells (HSCs) are the ultimate source of blood and immune cells, and transplantation reveals their unique potential to regenerate all blood lineages lifelong. HSCs are considered a quiescent reserve population under homeostatic conditions, which can be rapidly activated by perturbations to fuel blood regeneration. In accordance with this concept, inflammation and loss of blood cells were reported to stimulate the proliferation of HSCs, which is associated with a decline in their transplantation potential. To investigate the contribution of primitive HSCs to the hematopoietic stress response in the native environment, we use fate mapping and proliferation tracking mouse models. Although primitive HSCs were robustly activated by severe myeloablation, they did not contribute to the regeneration of mature blood cells in response to prototypic hematopoietic emergencies, such as acute inflammation or blood loss. Even chronic inflammatory stimulation, which triggered vigorous HSC proliferation, only resulted in a weak contribution of HSCs to mature blood cell production. Thus, our data demonstrate that primitive HSCs do not participate in the hematopoietic recovery from common perturbations and call for the reevaluation of the concept of HSC-driven stress responses.

1.
Cosgrove
J
,
Hustin
LSP
,
de Boer
RJ
,
Perié
L
.
Hematopoiesis in numbers
.
Trends Immunol
.
2021
;
42
(
12
):
1100
-
1112
.
2.
Thomas
ED
,
Lochte
HL
,
Lu
WC
,
Ferrebee
JW
.
Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy
.
N Engl J Med
.
1957
;
257
(
11
):
491
-
496
.
3.
Purton
LE
,
Scadden
DT
.
Limiting factors in murine hematopoietic stem cell assays
.
Cell Stem Cell
.
2007
;
1
(
3
):
263
-
270
.
4.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
S-W
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
5.
Naik
SH
,
Perié
L
,
Swart
E
, et al
.
Diverse and heritable lineage imprinting of early haematopoietic progenitors
.
Nature
.
2013
;
496
(
7444
):
229
-
232
.
6.
Sun
J
,
Ramos
A
,
Chapman
B
, et al
.
Clonal dynamics of native haematopoiesis
.
Nature
.
2014
;
514
(
7522
):
322
-
327
.
7.
Busch
K
,
Klapproth
K
,
Barile
M
, et al
.
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
.
Nature
.
2015
;
518
(
7540
):
542
-
546
.
8.
Pei
W
,
Feyerabend
TB
,
Rössler
J
, et al
.
Polylox barcoding reveals haematopoietic stem cell fates realized in vivo
.
Nature
.
2017
;
548
(
7668
):
456
-
460
.
9.
Bowling
S
,
Sritharan
D
,
Osorio
FG
, et al
.
An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells
.
Cell
.
2020
;
181
(
6
):
1410
-
1422.e27
.
10.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell
.
2008
;
135
(
6
):
1118
-
1129
.
11.
Visser
JW
,
Bol
SJ
,
van den Engh
G
.
Characterization and enrichment of murine hemopoietic stem cells by fluorescence activated cell sorting
.
Exp Hematol
.
1981
;
9
(
6
):
644
-
655
.
12.
Patel
SH
,
Christodoulou
C
,
Weinreb
C
, et al
.
Lifelong multilineage contribution by embryonic-born blood progenitors
.
Nature
.
2022
;
606
(
7915
):
747
-
753
.
13.
Schoedel
KB
,
Morcos
MNF
,
Zerjatke
T
, et al
.
The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis
.
Blood
.
2016
;
128
(
19
):
2285
-
2296
.
14.
Sheikh
BN
,
Yang
Y
,
Schreuder
J
, et al
.
MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells
.
Blood
.
2016
;
128
(
19
):
2307
-
2318
.
15.
Takizawa
H
,
Boettcher
S
,
Manz
MG
.
Demand-adapted regulation of early hematopoiesis in infection and inflammation
.
Blood
.
2012
;
119
(
13
):
2991
-
3002
.
16.
King
KY
,
Goodell
MA
.
Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response
.
Nat Rev Immunol
.
2011
;
11
(
10
):
685
-
692
.
17.
Trumpp
A
,
Essers
M
,
Wilson
A
.
Awakening dormant haematopoietic stem cells
.
Nat Rev Immunol
.
2010
;
10
(
3
):
201
-
209
.
18.
Caiado
F
,
Pietras
EM
,
Manz
MG
.
Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection
.
J Exp Med
.
2021
;
218
(
7
):
e20201541
.
19.
Foudi
A
,
Hochedlinger
K
,
Van Buren
D
, et al
.
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
.
Nat Biotechnol
.
2009
;
27
(
1
):
84
-
90
.
20.
Luche
H
,
Weber
O
,
Nageswara Rao
T
,
Blum
C
,
Fehling
HJ
.
Faithful activation of an extra bright red fluorescent protein in “knock in” Cre reporter mice ideally suited for lineage tracing studies
.
Eur J Immunol
.
2007
;
37
(
1
):
43
-
53
.
21.
Gazit
R
,
Mandal
PK
,
Ebina
W
, et al
.
Fgd5 identifies hematopoietic stem cells in the murine bone marrow
.
J Exp Med
.
2014
;
211
(
7
):
1315
-
1331
.
22.
Morcos
MNF
,
Li
C
,
Munz
CM
, et al
.
Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
4504
.
23.
Morcos
MNF
,
Schoedel
KB
,
Hoppe
A
, et al
.
SCA-1 Expression level identifies quiescent hematopoietic stem and progenitor cells
.
Stem Cell Rep
.
2017
;
8
(
6
):
1472
-
1478
.
24.
Bujanover
N
,
Goldstein
O
,
Greenshpan
Y
, et al
.
Identification of immune-activated hematopoietic stem cells
.
Leukemia
.
2018
;
32
(
9
):
2016
-
2020
.
25.
Takahashi
M
,
Barile
M
,
Chapple
RH
, et al
.
Reconciling Flux experiments for quantitative modeling of normal and malignant hematopoietic stem/progenitor dynamics
.
Stem Cell Rep
.
2021
;
16
(
4
):
741
-
753
.
26.
Säwen
P
,
Eldeeb
M
,
Erlandsson
E
, et al
.
Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging
.
Elife
.
2018
;
7
:
e41258
.
27.
Chapple
RH
,
Tseng
Y-J
,
Hu
T
, et al
.
Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis
.
Blood Adv
.
2018
;
2
(
11
):
1220
-
1228
.
28.
Madisen
L
,
Zwingman
TA
,
Sunkin
SM
, et al
.
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
.
Nat Neurosci
.
2010
;
13
(
1
):
133
-
140
.
29.
Álvarez-Aznar
A
,
Martínez-Corral
I
,
Daubel
N
,
Betsholtz
C
,
Mäkinen
T
,
Gaengel
K
.
Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines
.
Transgenic Res
.
2020
;
29
(
1
):
53
-
68
.
30.
Kanda
T
,
Sullivan
KF
,
Wahl
GM
.
Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells
.
Curr Biol
.
1998
;
8
(
7
):
377
-
385
.
31.
Morcos
MNF
,
Zerjatke
T
,
Glauche
I
, et al
.
Continuous mitotic activity of primitive hematopoietic stem cells in adult mice
.
J Exp Med
.
2020
;
217
(
6
):
e20191284
.
32.
Kanayama
M
,
Izumi
Y
,
Yamauchi
Y
, et al
.
CD86-based analysis enables observation of bona fide hematopoietic responses
.
Blood
.
2020
;
136
(
10
):
1144
-
1154
.
33.
Säwén
P
,
Lang
S
,
Mandal
P
,
Rossi
DJ
,
Soneji
S
,
Bryder
D
.
Mitotic history reveals distinct stem cell populations and their contributions to hematopoiesis
.
Cell Rep
.
2016
;
14
(
12
):
2809
-
2818
.
34.
Beutler
BA
.
TLRs and innate immunity
.
Blood
.
2009
;
113
(
7
):
1399
-
1407
.
35.
Greenbaum
AM
,
Link
DC
.
Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization
.
Leukemia
.
2011
;
25
(
2
):
211
-
217
.
36.
Boettcher
S
,
Gerosa
RC
,
Radpour
R
, et al
.
Endothelial cells translate pathogen signals into G-CSF–driven emergency granulopoiesis
.
Blood
.
2014
;
124
(
9
):
1393
-
1403
.
37.
Bernitz
JM
,
Daniel
MG
,
Fstkchyan
YS
,
Moore
K
.
Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice
.
Blood
.
2017
;
129
(
14
):
1901
-
1912
.
38.
Morrison
SJ
,
Wright
DE
,
Weissman
IL
.
Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
5
):
1908
-
1913
.
39.
Essers
MAG
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
40.
Bogeska
R
,
Mikecin
A-M
,
Kaschutnig
P
, et al
.
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging
.
Cell Stem Cell
.
2022
;
29
(
8
):
1273
-
1284.e8
.
41.
Sender
R
,
Milo
R
.
The distribution of cellular turnover in the human body
.
Nat Med
.
2021
;
27
(
1
):
45
-
48
.
42.
Dutra
FF
,
Alves
LS
,
Rodrigues
D
, et al
.
Hemolysis-induced lethality involves inflammasome activation by heme
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
39
):
E4110
-
E4118
.
43.
Ramasz
B
,
Krüger
A
,
Reinhardt
J
, et al
.
Hematopoietic stem cell response to acute thrombocytopenia requires signaling through distinct receptor tyrosine kinases
.
Blood
.
2019
;
134
(
13
):
1046
-
1058
.
44.
Sanchez-Aguilera
A
,
Arranz
L
,
Martin-Perez
D
, et al
.
Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis
.
Cell Stem Cell
.
2014
;
15
(
6
):
791
-
804
.
45.
Ito
S
,
Magalska
A
,
Alcaraz-Iborra
M
, et al
.
Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction
.
Nat Commun
.
2014
;
5
(
1
):
4450
.
46.
Hameyer
D
,
Loonstra
A
,
Eshkind
L
, et al
.
Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues
.
Physiol Genomics
.
2007
;
31
(
1
):
32
-
41
.
47.
Na Nakorn
T
,
Traver
D
,
Weissman
IL
,
Akashi
K
.
Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S
.
J Clin Invest
.
2002
;
109
(
12
):
1579
-
1585
.
48.
Fanti
A-K
,
Busch
K
,
Greco
A
, et al
.
Flt3- and Tie2-Cre tracing identifies regeneration in sepsis from multipotent progenitors but not hematopoietic stem cells
.
Cell Stem Cell
.
2023
;
30
(
2
):
207
-
218.e7
.
49.
Chawla-Sarkar
M
,
Lindner
DJ
,
Liu
YF
, et al
.
Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis
.
Apoptosis
.
2003
;
8
(
3
):
237
-
249
.
50.
Wu
X
,
Dao Thi
VL
,
Huang
Y
, et al
.
Intrinsic immunity shapes viral resistance of stem cells
.
Cell
.
2018
;
172
(
3
):
423
-
438.e25
.
51.
Pietras
EM
,
Lakshminarasimhan
R
,
Techner
J-M
, et al
.
Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons
.
J Exp Med
.
2014
;
211
(
2
):
245
-
262
.
52.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature
.
2015
;
520
(
7548
):
549
-
552
.
53.
Rabe
JL
,
Hernandez
G
,
Chavez
JS
,
Mills
TS
,
Nerlov
C
,
Pietras
EM
.
CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions
.
Exp Hematol
.
2020
;
81
:
1
-
15.e6
.
54.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native haematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
55.
Yamamoto
R
,
Morita
Y
,
Ooehara
J
, et al
.
Clonal Analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
.
Cell
.
2013
;
154
(
5
):
1112
-
1126
.
56.
Grinenko
T
,
Eugster
A
,
Thielecke
L
, et al
.
Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice
.
Nat Commun
.
2018
;
9
(
1
):
1898
.
57.
Haas
S
,
Hansson
J
,
Klimmeck
D
, et al
.
Inflammation-Induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors
.
Cell Stem Cell
.
2015
;
17
(
4
):
422
-
434
.
You do not currently have access to this content.
Sign in via your Institution