• In this systematic review, incidence and mortality rates of intracranial hemorrhage in hemophilia were pooled for more precise estimates.

  • Incidence and mortality rates of intracranial hemorrhage are higher in patients with hemophilia compared with the general population.

Intracranial hemorrhage (ICH) is a severe complication that is relatively common among patients with hemophilia. This systematic review aimed to obtain more precise estimates of ICH incidence and mortality in hemophilia, which may be important for patients, caregivers, researchers, and health policy makers. PubMed and EMBASE were systematically searched using terms related to “hemophilia” and “intracranial hemorrhage” or “mortality.” Studies that allowed calculation of ICH incidence or mortality rates in a hemophilia population ≥50 patients were included. We summarized evidence on ICH incidence and calculated pooled ICH incidence and mortality in 3 age groups: persons of all ages with hemophilia, children and young adults younger than age 25 years with hemophilia, and neonates with hemophilia. Incidence and mortality were pooled with a Poisson-Normal model or a Binomial-Normal model. We included 45 studies that represented 54 470 patients, 809 151 person-years, and 5326 live births of patients with hemophilia. In persons of all ages, the pooled ICH incidence and mortality rates were 2.3 (95% confidence interval [CI], 1.2-4.8) and 0.8 (95% CI 0.5-1.2) per 1000 person-years, respectively. In children and young adults, the pooled ICH incidence and mortality rates were 7.4 (95% CI, 4.9-11.1) and 0.5 (95% CI, 0.3-0.9) per 1000 person-years, respectively. In neonates, the pooled cumulative ICH incidence was 2.1% (95% CI, 1.5-2.8) per 100 live births. ICH was classified as spontaneous in 35% to 58% of cases. Our findings suggest that ICH is an important problem in hemophilia that occurs among all ages, requiring adequate preventive strategies.

Hemophilia A and B are bleeding disorders that are characterized by an X-linked inherited deficiency of coagulation factor VIII (FVIII) or IX (FIX). The clinical phenotype is dominated by the residual endogenous factor level, resulting in severe (<1 IU/dL), moderate (1-5 IU/dL), and mild (6-40 IU/dL) forms.1 Although joint and muscle bleeds are the hallmark of hemophilia, intracranial hemorrhage (ICH) can be considered the most severe complication. Intracranial bleeds may form serious life-threatening events and have been associated with considerable neurological sequelae in survivors.2-4 

Various studies have assessed the occurrence of ICH in hemophilia, reporting wide ranges in incidence and mortality among different cohorts. In 2008, a literature review concluded that ∼3% to 10% of patients with hemophilia experience an intracranial bleed during life. These numbers are based on patients who have primarily been treated on demand.5 In childhood, ICH seems to occur relatively frequently, which is illustrated by a recent study that reported an incidence of 6 events per 1000 person-years in children with hemophilia.6 Newborns seem to face an even higher risk for ICH. A systematic review estimated that neonates with hemophilia are 44 times more likely to experience an ICH compared with the general population.7 Regarding disease severity, patients with severe hemophilia are at increased risk for ICH compared with patients with nonsevere hemophilia. Nonetheless, a study in nonsevere hemophilia demonstrated that this group still has an increased standardized mortality rate of 3.5 from ICH compared with the general population.8 These findings indicate that ICH remains an important problem in all patients with hemophilia and that strategies to prevent this complication are crucial. Comprehensive knowledge on ICH in this population is needed to raise awareness and to support initiatives on prevention and treatment.

Diversity in study settings and small patient populations give rise to a wide range of reported incidences of ICH in hemophilia. Few pooled and precise estimates of ICH incidence and its associated mortality are available for the population with hemophilia. A systematic literature review with meta-analyses of ICH epidemiology in hemophilia may provide insight into the burden of ICH and guide future prevention and management.

In this systematic review and meta-analysis we aimed to summarize currently available evidence on ICH incidence and to obtain more precise estimates of ICH incidence and mortality rates in 3 groups: persons with hemophilia of all ages, children and young adults with hemophilia who are younger than 25 years of age, and neonates with hemophilia.

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement.9 The protocol was written in advance and registered in PROSPERO (record ID 100278).

Study eligibility

Type of studies

Eligible for inclusion were cross-sectional, longitudinal observational, and randomized studies reporting on incidence or mortality of ICH in congenital hemophilia, published as an article in a peer-reviewed journal. Studies had to provide sufficient data to enable calculation or reliable estimation of an incidence or mortality rate. No restrictions on publication dates or language were applied.

Type of patients

Study populations had to include ≥50 patients who were representative of the hemophilia population in general, irrespective of hemophilia type, severity, or age limits. Studies that primarily evaluated patients with HIV, hepatitis C virus, hepatitis B virus, inhibitors against FVIII or FIX, acquired hemophilia, or any other bleeding disorder were excluded.

Type of outcome measures

Studies had to report on ICH, defined as any intracranial bleed (including intraventricular, intraparenchymal, subarachnoid, subdural, and epidural bleeds), or mortality due to ICH. Studies that did not clearly differentiate between intra- and extracranial bleeds or ischemic and hemorrhagic strokes were excluded.

Search strategy

PubMed and EMBASE were searched using key terms related to “hemophilia” and either “intracranial hemorrhage” or “mortality” (full search strategy in supplemental Table 1, available on the Blood Web site). The search was developed under the supervision of a medical information specialist from the Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands (René Spijker). Reference lists of included studies and other reviews were searched to identify any additional studies that were not retrieved through the literature search. The primary search was run on 12 April 2018, and an update of the search was performed on 12 May 2020.

Study selection

Two independent reviewers (A.-F.Z. and either J.S.J. or C.V.) screened titles and abstracts and full texts for eligibility. Any doubts about eligibility or disagreements were discussed with a senior author (S.C.G.). To avoid duplicate inclusion of individuals, studies were evaluated for recruitment periods and catchment areas. In case of overlapping patient cohorts, the study with the longest follow-up or the study that provided the most comprehensive data was included.

Data extraction

Data were extracted from included studies using a standardized data collection form. The following data were extracted: study characteristics (ie, publication year, observation period, design, geographic location), population characteristics (ie, distribution of age, type and severity of hemophilia, treatment, comorbidities), information on ICH (incidence and mortality of ICH, number of ICH-related deaths out of total number of deaths), nature of ICH (ie, location of hemorrhage, cause of bleeding), and the number of person-years of follow-up of the hemophilia study population. When the exact number of person-years was not reported, we estimated the number based on the available data, if possible. Otherwise, investigators of the original studies were requested to provide additional information on the number of person-years. Supplemental Table 3 summarizes the reported and estimated person-years of included studies.

Quality assessment

The methodological quality of studies was assessed by 2 reviewers independently (A.-F..Z. and either J.S.J. or C.V.) and discussed with a senior author (S.C.G.) in case of disagreement. We adapted the version of the Joanna Briggs Institute checklist for studies on prevalence data and added items derived from the Joanna Briggs Institute checklist for cohort studies specific for incidence data (supplemental Table 2).10,11

Data synthesis

We performed analyses considering 3 groups: lifetime cohorts, children and young adults, and neonates.

Group 1: lifetime

First, data were summarized for study populations including all ages or adults only. The pooled data were presented as single-event incidence rate and mortality rate per 1000 person-years.

Group 2: children and young adults

Second, we analyzed study populations representing children or young adults younger than 25 years of age. The pooled data were presented as single-event incidence rate and mortality rate per 1000 person-years.

Group 3: neonatal period

Third, we included study populations reporting on the neonatal period. The pooled data were presented as single-event cumulative incidence and mortality per 100 live births.

Statistical analyses

Heterogeneity between studies was explored by assessing the between-study variance (τ2) and by visually estimating the extent to which confidence intervals (CIs) of studies overlapped. Because of acceptable heterogeneity, we pooled the results in a meta-analysis. Single-event incidence and mortality rates were pooled using a random-effects Poisson-Normal model. Proportions including single-event cumulative incidence and mortality were pooled using a random-effects Binomial-Normal model. These generalized linear mixed models are more appropriate than conventional methods for meta-analysis in the event of sparse or no event data and avoid the use of continuity corrections.12 Exact 95% CIs for the studies with no events were calculated using Episheet (version 2015).13 Case fatality was calculated as the percentage of fatal ICH events out of all single ICH events in a population. Spontaneous ICH was calculated as the proportion of ICH events classified as spontaneous out of all ICH events in a population and pooled as proportions. Analyses were performed in R (version 3.6.1) with the metafor package.

Data evaluation

Forest plots were arranged by their sample size to visually assess small-study data trends. Sensitivity analyses were performed for studies that reported the exact numbers of person-years of follow-up, as well as for studies that met ≥80% of the evaluated methodological quality items. In addition, separate analyses were performed for studies of children and young adults younger than 25 years excluding neonatal ICH events, and for study setting according to country income level based on the World Bank classification 2020 to 2021.

Our search yielded 2229 unique hits that resulted in 220 studies that were identified as potentially relevant after title and abstract screening (Figure 1). After additional full-text review, a total of 45 studies were included. Study details are shown in Tables 1 and 2. We classified studies as reporting on lifetime populations (n = 23), children and young adults younger than 25 years of age (n = 16), and the neonatal period (n = 12). Two studies were lifetime cohorts with pediatric-specific data,8,14 and 4 studies were pediatric cohorts with neonatal data.6,15-17 The investigators of 21 studies were contacted to request additional information about the number of person-years. Six investigators provided this information, resulting in 18 studies that reported the exact numbers of person-years and 19 studies for which the number of person-years was estimated. Supplemental Table 4 summarizes the studies that appeared to meet the inclusion criteria but were excluded on further inspection.

Figure 1.

Flowchart of the search strategy. The presented number of single ICH events does not include cases from studies that reported on fatal ICH events only. These fatal events were solely used for the ICH mortality analyses.

Figure 1.

Flowchart of the search strategy. The presented number of single ICH events does not include cases from studies that reported on fatal ICH events only. These fatal events were solely used for the ICH mortality analyses.

Close modal
Table 1.

Study and population characteristics

StudySettingPeriodAge limits,
(mean, y)
Total, NType A, nType B, nDisease severity, n (%)Proph.
n (%)
Inhib.
n (%)
HIV+
n (%)
HCV+
n (%)
Study details
SevereModerateMild
Lifetime               
 Khair et al54  AHEAD* 2011-2016 No (21) 522 522 299 (57) 221 (42) 406 (78) 22 (4) NR NR Prospective multicenter postauthorization study, patient diaries 
 Zanon et al19  Italy 1987-2008 No 3683 NR NR NR NR NR NR NR NR NR Survey among HTCs over 1987-2008, prospective follow-up over 2003-2008 
 Fransen van de Putte et al18  Netherlands ≤2010 ≥18 y (54) 408 365 43 204 (50) 204 nonsevere (50) NR NR 49 (12) 229 (56) Retrospective single-center study 
 Loomans et al8  INSIGHT 1980-2010 No 2709 2709 719 (27) 1990 (73) NR NR NR NR Retrospective multicenter study 
 Koumbarelis et al41  Greece 1972-1993 No 531 460 71 319 (60) 92 (17) 227 (43) 38 (7) 156 (29) NR Single-center registry 
 Plug et al45  Netherlands 1992-2001 No (32) 967 796 171 386 (40) 167 (17) 414 (43) NR 50 (5) 53 (5) NR National survey, medical files and municipal registries 
 Rosendaal et al44  Netherlands 1973-1986 No (23) 717 616 101 321 (45) 169 (24) 227 (32) 129 (18) 30 (4) NR NR National survey, medical files and municipal registries 
 Triemstra et al46  Netherlands 1986-1992 No (30) 919 796 123 381 (41) 172 (19) 366 (40) 200 (22) 22 (2) 35 (4) NR National survey, medical files and municipal registries 
 Nuss et al21  USA 1993-1997 No 3269 2579 690 1371 (42) 779 (24) 1028 (31) 82 (3) 146 (4) 827 (25) 1346 (41) Case-control in HSS database, ICD codes & medical files 
 Yoo et al55  Korea 1991-2012 No 2048 1675 373 1354 (66) 452 (22) 226 (11) NR 79 (4) 25 (1) NR National registry 
 Darby et al14  UK 1977-1998 <85 y 6018 4874 1144 1320 (22) 1476 (25) 3222 (54) NR NR NR UKHCDO, all patients registered at UK HTCs 
 Witmer et al22  USA 1998-2008 >2 y 10 262 8087 2175 5581 (54) 2398 (24) 2283 (22) 3052 (30) 586 (6) 1311 (13) 4107 (40) Prospective case-control UDC database 
 Shih et al56  Taiwan 1997-2013 No (33) 795 658 137 795 (100) NR 218 (27) 29 (4) Retrospective national insurance database 
 Fransen van de Putte et al57  Netherlands & UK ≤2011 ≥30 y (50) 709 594 113 344 (48) 365 nonsevere (52) 223 (31) NR 76 (11) 228 (32) Retrospective study into lifetime CVD events of a living cohort 
 Lövdahl et al58  Sweden 1968-2009 No 1431 NR NR 384 (41) 145 (16) 405 (43) NR NR 96 (7) NR Hemophilia registry and death, migration, and medical birth registries, ICD codes 
 Reitter et al59  Austria 1983-2006 No (28) 226 207 19 128 (57) 14 (6) 84 (37) NR 21 (9) 74 (33) 136 (60) Retrospective survival analysis, death registry, medical files, ICD codes 
 Sharathkumar et al60  USA ≤2008 ≥35 y (53) 185 102 83 47 (25) 57 (31) 81 (44) 8 (4) 27 (15) 125 (68) Retrospective study into lifetime CVD events of a living cohort 
 Rizza and Spooner61  UK 1976-1980 <85 y 5098 4321 777 2179 (43) 2491 nonsevere (49) NR 265 (5) NR NR UKHCDO, all patients registered at UK HTCs 
 Rizza et al62  UK 1981-1996 <85 y 5890 4826 1064 1878 (32) 3723 nonsevere (63) NR 261 (4) NR NR UKHCDO, all patients registered at UK HTCs 
 Kim et al63  Korea ≤1987 No 498 425 73 273 (55) 182 (37) 43 (9) NR NR 2 (0) 11 (3) Survey among all HTCs in Korea 
 Chuansumrit et al20  Thailand 1971-2000 No (17) 164 138 26 64 (39) 81 (49) 19 (16) NR 7 (1) 43 (26) Retrospective survival analysis 
 Okolo et al64  USA ≤2013 No (30) 704 456 248 233 (33) 185 (26) 267 (38) 201 (29) 16 (2) 28 (4) 134 (19) Surveillance study (IHSS), vital statistics, medical files, birth registry, claims 
 Fukutake et al65  Japan 2007-2012 ≥1 y (26) 352 352 266 (76) 63 (18) 21 (6) 195 (55) 9 (3) NR NR Retrospective and prospective multicenter postauthorization study 
Children and young adults               
 Andersson et al3  PedNet 2011-2015 1 mo to 22 y (9) 1515 1250 265 1515 (100) NR NR NR Registry with 5-y retrospective data and 4-y prospective data (2011-2015) 
 Traivaree et al23  Canada 1996-2004 1 mo to 18 y (10) 275 218 57 116 (42) 159 nonsevere (58) 88 (32) 12 (4) NR NR Retrospective single-center study 
 Hu et al24  China 2009-2014 Children 126 126 42 (33) 64 (51) 20 (16) 36 (29) 2 (2) NR NR Retrospective study of all patients receiving treatment during study period 
 Haque et al66  China 2005-2017 Children 226 170 56 91 (40) 88 (39) 47 (21) NR 9 (0) NR NR Retrospective single-center study 
 Loomans et al8  INSIGHT 1980-2010 ≤19 y NR NR NR NR NR NR NR NR Retrospective multicenter study 
 Darby et al14  UK 1977-1998 ≤24 y NR NR NR NR NR NR NR NR NR NR UKHCDO, all patients registered at UK HTCs 
 Chalmers et al6  UK 2003-2015 ≤16 y 1321 1096 225 655 (50) 666 nonsevere (50) NR NR NR NR UKHCDO, retrospective study of database 
 Bladen et al17  UK 1987-2013 Children 431 364 67 283 (66) 34 (8) 107 (25) NR NR NR NR Retrospective single-center study 
 Revel-Vilk et al16  Canada 1984-2000 ≤18 y (9§172 NR NR NR NR NR NR NR NR Retrospective study into lifetime ICH of a living cohort 
 Carneiro et al67  Brazil NR NR (13) 50 38 12 35 (70) 15 (30) 33 (66) 5 (10) NR NR Cross-sectional random sample of a living cohort with retrospective ICH assessment 
 Canada  NR (12) 50 41 35 (70) 15 (30) 38 (76) 6 (12) 
 Nelson et al68  USA 1989-1994 ≤19 y (12§309ǁ 273 50 246 (74) 63 (19) 23 (7) NR NR 207 (67) NR Retrospective study of living children enrolled in HGDS study 
 Poonnoose et al69  Musfih 2005-2010 5-17 y 255 220 35 255 (100) 39 (15) NR NR Prospective multicenter study 
 Klinge et al15  Germany 1975-1998 Children 744 602 142 507 (68) 235 nonsevere (32) NR NR NR NR Survey among HTCs over children born 1975-1997, retrospective ICH assessment 
 Meunier et al70  France <2012 ≤25 y 209 183 26 171 (82) 38 (18) 169 (81) NR NR Retrospective multicenter study of a living cohort 
 Öner et al71  Turkey 1985-2017 <18 y 135 113 22 64 (47) 41 (30) 30 (22) NR 17 (13) NR NR Retrospective single-center study 
 Kulkarni et al25  USA 2004-2011 <2 y 547 450 97 326 (60) 131 (24) 89 (16) NR 109 (20) NR NR UDC database enrolling babies with ≥1 visit between 24 and 30 mo of age 
Neonates               
 Ljung et al26  Sweden 1970-1990 Perinatal 117 101 16 89 (76) 28 (24) NR NR NR NR National retrospective analysis 
 MacLean et al72  Netherlands 1985-2002 Postnatal 73 60 13 25 (34) 9 (12) 39 (53) NR NR NR NR Retrospective analysis of a living cohort 
 Kenet et al27  USA 2003-2010 <1 mo 633 NR NR NR NR NR NR 5 (1) NR NR UDC database enrolling babies diagnosed within 1 mo of age 
 Richards et al28  EHTSB# 1990-2008 ≤28 d 508 429 78 257 (51) 101 (20) 149 (29) NR NR NR NR Retrospective multicenter study 
 Nazir et al29  Gulf region** 1998-2015 <2 wk 163 163 163 (100) NR NR NR NR Study with retrospective data (1998-2013) and prospective data (2013-2015) 
 Palomo Bravo et al73  Spain 2000-2012 Perinatal 88 80 42 (48) 12 (14) 34 (39) NR NR NR NR Retrospective study of consecutively born children followed up for ≥1 y 
 Andersson et al30  PedNet†† 2000-2015 ≤28 d 926 803 123 786 (85) 140 (15) NR NR NR NR Prospective study of children consecutively born with ≥1 follow-up visit 
 Yoffe and Buchanan74  USA 1977-1987 Neonatal 150 119 31 NR NR NR NR NR NR NR Retrospective analysis of a living cohort 
 Klinge et al15  Germany 1975-1997 <1 wk 744 602 142 507 (68) 129 (17) 108 (15) NR NR NR NR Survey among HTCs over children born 1975-1997, retrospective ICH assessment 
 Revel-Vilk et al16  Canada 1984-2000 <1 mo 172 NR NR NR NR NR NR NR NR NR Retrospective study into lifetime ICH among a living cohort 
 Bladen et al17  UK 1987-2013 Neonatal 431 364 67 283 (66) 34 (8) 107 (25) NR NR NR NR Retrospective single-center study 
 Chalmers et al6  UK 2003-2015 <1 mo 1321 1096 225 655 (50) 666 nonsevere (50) NR NR NR NR UKHCDO, retrospective study of database 
StudySettingPeriodAge limits,
(mean, y)
Total, NType A, nType B, nDisease severity, n (%)Proph.
n (%)
Inhib.
n (%)
HIV+
n (%)
HCV+
n (%)
Study details
SevereModerateMild
Lifetime               
 Khair et al54  AHEAD* 2011-2016 No (21) 522 522 299 (57) 221 (42) 406 (78) 22 (4) NR NR Prospective multicenter postauthorization study, patient diaries 
 Zanon et al19  Italy 1987-2008 No 3683 NR NR NR NR NR NR NR NR NR Survey among HTCs over 1987-2008, prospective follow-up over 2003-2008 
 Fransen van de Putte et al18  Netherlands ≤2010 ≥18 y (54) 408 365 43 204 (50) 204 nonsevere (50) NR NR 49 (12) 229 (56) Retrospective single-center study 
 Loomans et al8  INSIGHT 1980-2010 No 2709 2709 719 (27) 1990 (73) NR NR NR NR Retrospective multicenter study 
 Koumbarelis et al41  Greece 1972-1993 No 531 460 71 319 (60) 92 (17) 227 (43) 38 (7) 156 (29) NR Single-center registry 
 Plug et al45  Netherlands 1992-2001 No (32) 967 796 171 386 (40) 167 (17) 414 (43) NR 50 (5) 53 (5) NR National survey, medical files and municipal registries 
 Rosendaal et al44  Netherlands 1973-1986 No (23) 717 616 101 321 (45) 169 (24) 227 (32) 129 (18) 30 (4) NR NR National survey, medical files and municipal registries 
 Triemstra et al46  Netherlands 1986-1992 No (30) 919 796 123 381 (41) 172 (19) 366 (40) 200 (22) 22 (2) 35 (4) NR National survey, medical files and municipal registries 
 Nuss et al21  USA 1993-1997 No 3269 2579 690 1371 (42) 779 (24) 1028 (31) 82 (3) 146 (4) 827 (25) 1346 (41) Case-control in HSS database, ICD codes & medical files 
 Yoo et al55  Korea 1991-2012 No 2048 1675 373 1354 (66) 452 (22) 226 (11) NR 79 (4) 25 (1) NR National registry 
 Darby et al14  UK 1977-1998 <85 y 6018 4874 1144 1320 (22) 1476 (25) 3222 (54) NR NR NR UKHCDO, all patients registered at UK HTCs 
 Witmer et al22  USA 1998-2008 >2 y 10 262 8087 2175 5581 (54) 2398 (24) 2283 (22) 3052 (30) 586 (6) 1311 (13) 4107 (40) Prospective case-control UDC database 
 Shih et al56  Taiwan 1997-2013 No (33) 795 658 137 795 (100) NR 218 (27) 29 (4) Retrospective national insurance database 
 Fransen van de Putte et al57  Netherlands & UK ≤2011 ≥30 y (50) 709 594 113 344 (48) 365 nonsevere (52) 223 (31) NR 76 (11) 228 (32) Retrospective study into lifetime CVD events of a living cohort 
 Lövdahl et al58  Sweden 1968-2009 No 1431 NR NR 384 (41) 145 (16) 405 (43) NR NR 96 (7) NR Hemophilia registry and death, migration, and medical birth registries, ICD codes 
 Reitter et al59  Austria 1983-2006 No (28) 226 207 19 128 (57) 14 (6) 84 (37) NR 21 (9) 74 (33) 136 (60) Retrospective survival analysis, death registry, medical files, ICD codes 
 Sharathkumar et al60  USA ≤2008 ≥35 y (53) 185 102 83 47 (25) 57 (31) 81 (44) 8 (4) 27 (15) 125 (68) Retrospective study into lifetime CVD events of a living cohort 
 Rizza and Spooner61  UK 1976-1980 <85 y 5098 4321 777 2179 (43) 2491 nonsevere (49) NR 265 (5) NR NR UKHCDO, all patients registered at UK HTCs 
 Rizza et al62  UK 1981-1996 <85 y 5890 4826 1064 1878 (32) 3723 nonsevere (63) NR 261 (4) NR NR UKHCDO, all patients registered at UK HTCs 
 Kim et al63  Korea ≤1987 No 498 425 73 273 (55) 182 (37) 43 (9) NR NR 2 (0) 11 (3) Survey among all HTCs in Korea 
 Chuansumrit et al20  Thailand 1971-2000 No (17) 164 138 26 64 (39) 81 (49) 19 (16) NR 7 (1) 43 (26) Retrospective survival analysis 
 Okolo et al64  USA ≤2013 No (30) 704 456 248 233 (33) 185 (26) 267 (38) 201 (29) 16 (2) 28 (4) 134 (19) Surveillance study (IHSS), vital statistics, medical files, birth registry, claims 
 Fukutake et al65  Japan 2007-2012 ≥1 y (26) 352 352 266 (76) 63 (18) 21 (6) 195 (55) 9 (3) NR NR Retrospective and prospective multicenter postauthorization study 
Children and young adults               
 Andersson et al3  PedNet 2011-2015 1 mo to 22 y (9) 1515 1250 265 1515 (100) NR NR NR Registry with 5-y retrospective data and 4-y prospective data (2011-2015) 
 Traivaree et al23  Canada 1996-2004 1 mo to 18 y (10) 275 218 57 116 (42) 159 nonsevere (58) 88 (32) 12 (4) NR NR Retrospective single-center study 
 Hu et al24  China 2009-2014 Children 126 126 42 (33) 64 (51) 20 (16) 36 (29) 2 (2) NR NR Retrospective study of all patients receiving treatment during study period 
 Haque et al66  China 2005-2017 Children 226 170 56 91 (40) 88 (39) 47 (21) NR 9 (0) NR NR Retrospective single-center study 
 Loomans et al8  INSIGHT 1980-2010 ≤19 y NR NR NR NR NR NR NR NR Retrospective multicenter study 
 Darby et al14  UK 1977-1998 ≤24 y NR NR NR NR NR NR NR NR NR NR UKHCDO, all patients registered at UK HTCs 
 Chalmers et al6  UK 2003-2015 ≤16 y 1321 1096 225 655 (50) 666 nonsevere (50) NR NR NR NR UKHCDO, retrospective study of database 
 Bladen et al17  UK 1987-2013 Children 431 364 67 283 (66) 34 (8) 107 (25) NR NR NR NR Retrospective single-center study 
 Revel-Vilk et al16  Canada 1984-2000 ≤18 y (9§172 NR NR NR NR NR NR NR NR Retrospective study into lifetime ICH of a living cohort 
 Carneiro et al67  Brazil NR NR (13) 50 38 12 35 (70) 15 (30) 33 (66) 5 (10) NR NR Cross-sectional random sample of a living cohort with retrospective ICH assessment 
 Canada  NR (12) 50 41 35 (70) 15 (30) 38 (76) 6 (12) 
 Nelson et al68  USA 1989-1994 ≤19 y (12§309ǁ 273 50 246 (74) 63 (19) 23 (7) NR NR 207 (67) NR Retrospective study of living children enrolled in HGDS study 
 Poonnoose et al69  Musfih 2005-2010 5-17 y 255 220 35 255 (100) 39 (15) NR NR Prospective multicenter study 
 Klinge et al15  Germany 1975-1998 Children 744 602 142 507 (68) 235 nonsevere (32) NR NR NR NR Survey among HTCs over children born 1975-1997, retrospective ICH assessment 
 Meunier et al70  France <2012 ≤25 y 209 183 26 171 (82) 38 (18) 169 (81) NR NR Retrospective multicenter study of a living cohort 
 Öner et al71  Turkey 1985-2017 <18 y 135 113 22 64 (47) 41 (30) 30 (22) NR 17 (13) NR NR Retrospective single-center study 
 Kulkarni et al25  USA 2004-2011 <2 y 547 450 97 326 (60) 131 (24) 89 (16) NR 109 (20) NR NR UDC database enrolling babies with ≥1 visit between 24 and 30 mo of age 
Neonates               
 Ljung et al26  Sweden 1970-1990 Perinatal 117 101 16 89 (76) 28 (24) NR NR NR NR National retrospective analysis 
 MacLean et al72  Netherlands 1985-2002 Postnatal 73 60 13 25 (34) 9 (12) 39 (53) NR NR NR NR Retrospective analysis of a living cohort 
 Kenet et al27  USA 2003-2010 <1 mo 633 NR NR NR NR NR NR 5 (1) NR NR UDC database enrolling babies diagnosed within 1 mo of age 
 Richards et al28  EHTSB# 1990-2008 ≤28 d 508 429 78 257 (51) 101 (20) 149 (29) NR NR NR NR Retrospective multicenter study 
 Nazir et al29  Gulf region** 1998-2015 <2 wk 163 163 163 (100) NR NR NR NR Study with retrospective data (1998-2013) and prospective data (2013-2015) 
 Palomo Bravo et al73  Spain 2000-2012 Perinatal 88 80 42 (48) 12 (14) 34 (39) NR NR NR NR Retrospective study of consecutively born children followed up for ≥1 y 
 Andersson et al30  PedNet†† 2000-2015 ≤28 d 926 803 123 786 (85) 140 (15) NR NR NR NR Prospective study of children consecutively born with ≥1 follow-up visit 
 Yoffe and Buchanan74  USA 1977-1987 Neonatal 150 119 31 NR NR NR NR NR NR NR Retrospective analysis of a living cohort 
 Klinge et al15  Germany 1975-1997 <1 wk 744 602 142 507 (68) 129 (17) 108 (15) NR NR NR NR Survey among HTCs over children born 1975-1997, retrospective ICH assessment 
 Revel-Vilk et al16  Canada 1984-2000 <1 mo 172 NR NR NR NR NR NR NR NR NR Retrospective study into lifetime ICH among a living cohort 
 Bladen et al17  UK 1987-2013 Neonatal 431 364 67 283 (66) 34 (8) 107 (25) NR NR NR NR Retrospective single-center study 
 Chalmers et al6  UK 2003-2015 <1 mo 1321 1096 225 655 (50) 666 nonsevere (50) NR NR NR NR UKHCDO, retrospective study of database 

CVD, cardiovascular disease; HCV, hepatitis C virus; HGDS, Hemophilia Growth and Development Study; HSS, Haemophilia Surveillance System; HTC, hemophilia treatment center; ICD, International Classification of Disease; IHSS, Indiana Haemophilia Surveillance System; Inhib., inhibitor positive; NR, not reported; Proph., prophylaxis; UDC, Universal Data Collection surveillance system; UK, United Kingdom, UKHCDO, United Kingdom Haemophilia Centre Doctors' Organisation.

*

Austria, Australia, Belgium, Brazil, Canada, Denmark, France, Germany, Greece, Italy, Spain, Sweden, Switzerland, UK, Colombia, Czech Republic, Hungary, Poland, Portugal, Russia, and Slovenia.

Austria, Australia, Belgium, Finland, Germany, Italy, Netherlands, Spain, Sweden, and UK.

Austria, Australia, Belgium, Canada, China, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Spain, Sweden, Switzerland, UK, USA, Israel, and Turkey.

§

Median instead of mean.

ǁ

A total of 333 patients were included, history of ICH was available for 309 patients. Numbers for severity and type do not add up because of missing data.

Argentina, Brazil, South Africa, Thailand, Egypt, Singapore, Venezuela, and Iran.

#

Finland, France, Germany, Italy, Netherlands, Spain, UK, and Slovakia.

**

Oman, United Arab Emirates, Kuwait, and Saudi Arabia.

††

Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, UK, Israel, and Portugal.

Study characteristics

The studies reporting over lifetime described 48 105 patients and 697 465 person-years over 6 decades (study period: 1968-2016). The studies reporting on children and young adults younger than 25 years described 111 686 person-years over 5 decades (study period: 1975-2017). The studies reporting on the neonatal period described 5326 neonates over 5 decades (study period: 1970-2015). Figure 1 shows further details on the number of events in the different groups. The populations in this review were included in 43 countries (22 Europe, 4 East Asia, 2 Southeast Asia, 6 West Asia, 1 Australia, 2 North America, 4 South America, 2 Africa). The majority of studies were conducted in high-income settings, especially for lifetime and neonatal populations. In 51 265 patients for whom the disease severity was reported, 23 830 (46%) and 27 435 (54%) patients had severe and nonsevere hemophilia, respectively (Table 1).

Methodological quality

The critical appraisal of the included 45 studies can be found in supplemental Table 5. Six studies were included in multiple population groups and, therefore, were evaluated twice, which resulted in 51 evaluated studies. At least 80% of the quality items were met in 19 of these 51 studies. Reasons for not meeting quality items were most frequently related to a lack of description of diagnostic methods and unclear or inadequate handling of loss to follow-up.

ICH incidence

Figure 2 represents the pooled analyses of ICH incidence among the 3 age groups. Over lifetime, the pooled ICH incidence rate was 2.3 (95% CI, 1.2-4.8) per 1000 person-years, calculated over 11 studies. In children and young adults younger than 25 years, the pooled ICH incidence rate was 7.4 (95% CI, 4.9-11.1) per 1000 person-years, calculated over 12 studies. These findings suggest that ICH occurrence in hemophilia can be estimated at 0.23% and 0.74% per year for lifetime populations and children and young adults, respectively. When restricted to 7 pediatric studies without neonatal ICH, the pooled ICH incidence rate was 4.5 (95% CI, 2.7-7.5) per 1000 person-years (supplemental Figure 1E). In 1 pediatric study reporting incidence among different age categories, the highest ICH incidence rates were observed in children aged 0 to 4 years with 16.4, 18.4, 7.5, and 8.0 events per 1000 person-years per 1-year stratum, respectively (Table 2; supplemental Figure 3).3 In neonates, the pooled ICH cumulative incidence was 2.1% (95% CI, 1.5-2.8) per 100 live births, calculated over 12 studies. Hence, ∼2.1% of newborns with hemophilia are expected to experience an ICH in the neonatal period.

Figure 2.

Pooled analyses of single-event ICH incidence for lifetime, children and young adults younger than age 25 years, and neonates. The diamond represents the pooled estimate. (A) Pooled single-event ICH incidence rates per 1000 person-years for lifetime cohorts. The results from the prospective follow-up from Zanon et al (2012)19 were used in this analysis instead of the results from retrospective and prospective follow-up. (B) Pooled single-event ICH incidence rates per 1000 person-years for children and young adults younger than 25 years of age. The study by Traivaree et al (2007)23 was excluded from the analysis because of overlap in the catchment area and population with the study by Revel-Vilk et al (2004)16, which had a longer follow-up period. The study by Kulkarni et al (2017)25 was excluded from the analysis because it concerned a specific cohort of infants <2 years of age. The studies by Andersson et al (2017)3, Hu et al (2018),23 and Poonnoose et al (2017)69 did not include neonatal ICH. (C) Pooled single-event ICH cumulative incidence per 100 live births for neonates.

Figure 2.

Pooled analyses of single-event ICH incidence for lifetime, children and young adults younger than age 25 years, and neonates. The diamond represents the pooled estimate. (A) Pooled single-event ICH incidence rates per 1000 person-years for lifetime cohorts. The results from the prospective follow-up from Zanon et al (2012)19 were used in this analysis instead of the results from retrospective and prospective follow-up. (B) Pooled single-event ICH incidence rates per 1000 person-years for children and young adults younger than 25 years of age. The study by Traivaree et al (2007)23 was excluded from the analysis because of overlap in the catchment area and population with the study by Revel-Vilk et al (2004)16, which had a longer follow-up period. The study by Kulkarni et al (2017)25 was excluded from the analysis because it concerned a specific cohort of infants <2 years of age. The studies by Andersson et al (2017)3, Hu et al (2018),23 and Poonnoose et al (2017)69 did not include neonatal ICH. (C) Pooled single-event ICH cumulative incidence per 100 live births for neonates.

Close modal
Table 2.

ICH incidence and mortality rates, case fatality and proportions of ICH-related deaths in patients with hemophilia

StudyPersons with ICH, nTotal ICH events, nFatal ICH, nPerson-yICH single-event incidence rate per 1000 person-yICH multiple-event incidence rate per 1000 person-yICH mortality rate per 1000 person-yCase fatality, %Deaths caused by ICH/total deaths, n/N (%)
Lifetime: reported person-y          
 Khair et al54  NR 811 2.5 2.5 NR NR NR 
 Zanon et al 19           
  1987-2008 88 112 22 130692 0.7 0.9 0.2 25 NR 
  2003-2008 38 NR NR 19941 1.9 NR NR NR NR 
 Fransen van de Putte et al18  35 39 14574 2.4 2.7 0.6 25 9/78 (12) 
 Loomans et al8  NR NR 17 64208 NR NR 0.3 NR 17/148 (11) 
  0-9   831   0.2   
  10-19   122   0.1   
  20-29   932   0.1   
  30-39   208     
  40-49   8713   0.2   
  50-59   6368   0.6   
  60-69   3892   1.3   
  70-79   1699   1.2   
  >79   444     
 Koumbarelis et al41  NR NR 16 8641 NR NR 1.9 NR 16/78 (21) 
 Plug et al45  NR NR 8868 NR NR 0.5 NR 4/94 (4) 
 Rosendaal et al44  NR NR 7788 NR NR 0.4 NR 3/43 (7) 
 Triemstra et al46  NR NR 5753 NR NR 1.6 NR 9/45 (20) 
 Nuss et al21  80 88 16 13930 5.7 6.3 1.2 20 NR 
 Yoo et al55  NR NR 50 29434 NR NR 1.7 NR 50/137 (36) 
 Darby et al14  NR NR 168 98750 NR NR 1.7 NR 168/706 (24) 
  0-4   14 6308   2.2   
  5-14   15000   0.1   
  15-24   20714   0.3   
  25-34   10 14737   0.7   
  35-44   19 13529   1.4   
  45-54   23 10655   2.2   
  55-64   37 7477   4.9   
  65-74   41 4674   8.8   
  75-84   14 1750   8.6   
 Witmer et al22  199 NR 39 51026 3.9 NR 0.8 20 NR 
 Shih et al56  NR 90 NR 11140 NR 8.1 NR NR NR 
  >18  58  7184  8.1    
Lifetime: estimated person-y          
 Fransen van de Putte et al57  11 NR NR 35260 0.3 NR NR NR NR 
 Lövdahl et al58  NR NR 15 63250 NR NR 0.2 NR 15/382 (4) 
 Reitter et al59  NR NR 4272 NR NR 1.6 NR 7/96 (7) 
 Sharathkumar et al60  NR 9713 0.3 0.3 NR NR NR 
 Rizza and Spooner61  NR NR 30 25754 NR NR 1.2 NR 30/107 (28) 
 Rizza et al62  NR NR 148 87962 NR NR 1.7 NR 148/1298 (11) 
 Kim et al63  48 NR 5878 8.2 NR 0.5 NR 
 Chuansumrit et al20  24 41 1492 16.1 27.5 4.7 29 7/25 (28) 
 Okolo et al64  38 NR NR 17600 2.2 NR NR NR NR 
 Fukutake et al65  669 1.5 1.5 0/0 
Children and young adults: reported person-y          
 Andersson et al3  29* 29* 2* 8038 3.6* 3.6* 0.3* NR 
  0 to <1   244 16.4     
  1 to <2   489 18.4     
  2 to <3   535 7.5     
  3 to <4   499 8.0     
  4 to <5   508 3.9     
  5 to <6   494 2.0     
  6 to <13   3247 0.6     
  13 to <19   1878 1.6     
  19 to <22   145     
 Traivaree et al23  8* 11* 0* 1584 5.0* 7.3* 0* NR 
 Hu et al24  13* 13* 0* 653 19.9* 19.9* 0* NR NR 
 Haque et al66  52 61 1444 36.0 42.2 3.5 10 NR 
 Loomans et al8  NR NR 21953 NR NR 0.1 NR NR 
  0-9   10831   0.2   
  10-19   11122   0.1   
 Darby et al14  NR NR 23 42164 NR NR  NR 23/51 (45) 
  0-4   14 6450   0.5   
  5-14   15000   2.2   
  15-24   714   0.1   
 Chalmers  et al6  54 59 9000 6.0 6.6 0.9 15 NR 
 36* 41*   4.0* 4.6*    
Children and young adults: estimated person-y          
 Bladen et al17  26 30 4691 5.5 6.4 0.9 15 NR 
 12* 16* 0*  2.6* 3.4* 0* 0*  
 Revel-Vilk et al16  18 25 NR 1582 11.4 15.8 NR NR NR 
 13* 20*   8.2* 12.6*    
 Carneiro et al67           
  Brazil NR 650 13.8 13.8 NR NR NR 
  Canada  605 6.6 6.6    
 Nelson et al68  36 48 NR 3832 9.4 12.5 NR NR 2/45 (0) 
 Poonnoose et al69  3* 3* 1* 1145 2.6* 2.6* 0.9* 33 1/2 (50) 
 Klinge et al 15  30 NR 7466 4.0 NR 0.1 NR 
 19*    2.5*     
 Meunier et al70  22 NR NR 4198 5.2 NR NR NR NR 
 Öner et al71  1587 5.0 5.0 1.3 25 2/2 (100) 
 Kulkarni et al25  37 46 NR 1094 33.8 42.0 NR NR NR 
Neonates          
 Ljung et al26  NR NR 117 3.4 NR NR NR NR 
 MacLean et al72  NR NR 73 1.4 NR NR NR NR 
 Kenet et al27  22 NR NR 633 3.5 NR NR NR NR 
 Richards et al28  NR 508 0.8 NR NR 
 Nazir et al29  NR 163 3.1 3.1 NR NR NR 
 Palomo Bravo et al73  NR 88 NR NR NR 
 Andersson et al30  20 NR 926 2.2 NR 0.1 NR 
 Yoffe and Buchanan74  NR 150 3.3 3.3 NR NR NR 
 Klinge et al15  11 NR NR 744 1.5 NR NR NR NR 
 Revel-Vilk et al16  NR 172 2.9 2.9 NR NR NR 
 Bladen et al17  14 NR 431 3.2 NR 0.9 29 NR 
 Chalmers et al6  18 NR NR 1321 1.4 NR NR NR NR 
StudyPersons with ICH, nTotal ICH events, nFatal ICH, nPerson-yICH single-event incidence rate per 1000 person-yICH multiple-event incidence rate per 1000 person-yICH mortality rate per 1000 person-yCase fatality, %Deaths caused by ICH/total deaths, n/N (%)
Lifetime: reported person-y          
 Khair et al54  NR 811 2.5 2.5 NR NR NR 
 Zanon et al 19           
  1987-2008 88 112 22 130692 0.7 0.9 0.2 25 NR 
  2003-2008 38 NR NR 19941 1.9 NR NR NR NR 
 Fransen van de Putte et al18  35 39 14574 2.4 2.7 0.6 25 9/78 (12) 
 Loomans et al8  NR NR 17 64208 NR NR 0.3 NR 17/148 (11) 
  0-9   831   0.2   
  10-19   122   0.1   
  20-29   932   0.1   
  30-39   208     
  40-49   8713   0.2   
  50-59   6368   0.6   
  60-69   3892   1.3   
  70-79   1699   1.2   
  >79   444     
 Koumbarelis et al41  NR NR 16 8641 NR NR 1.9 NR 16/78 (21) 
 Plug et al45  NR NR 8868 NR NR 0.5 NR 4/94 (4) 
 Rosendaal et al44  NR NR 7788 NR NR 0.4 NR 3/43 (7) 
 Triemstra et al46  NR NR 5753 NR NR 1.6 NR 9/45 (20) 
 Nuss et al21  80 88 16 13930 5.7 6.3 1.2 20 NR 
 Yoo et al55  NR NR 50 29434 NR NR 1.7 NR 50/137 (36) 
 Darby et al14  NR NR 168 98750 NR NR 1.7 NR 168/706 (24) 
  0-4   14 6308   2.2   
  5-14   15000   0.1   
  15-24   20714   0.3   
  25-34   10 14737   0.7   
  35-44   19 13529   1.4   
  45-54   23 10655   2.2   
  55-64   37 7477   4.9   
  65-74   41 4674   8.8   
  75-84   14 1750   8.6   
 Witmer et al22  199 NR 39 51026 3.9 NR 0.8 20 NR 
 Shih et al56  NR 90 NR 11140 NR 8.1 NR NR NR 
  >18  58  7184  8.1    
Lifetime: estimated person-y          
 Fransen van de Putte et al57  11 NR NR 35260 0.3 NR NR NR NR 
 Lövdahl et al58  NR NR 15 63250 NR NR 0.2 NR 15/382 (4) 
 Reitter et al59  NR NR 4272 NR NR 1.6 NR 7/96 (7) 
 Sharathkumar et al60  NR 9713 0.3 0.3 NR NR NR 
 Rizza and Spooner61  NR NR 30 25754 NR NR 1.2 NR 30/107 (28) 
 Rizza et al62  NR NR 148 87962 NR NR 1.7 NR 148/1298 (11) 
 Kim et al63  48 NR 5878 8.2 NR 0.5 NR 
 Chuansumrit et al20  24 41 1492 16.1 27.5 4.7 29 7/25 (28) 
 Okolo et al64  38 NR NR 17600 2.2 NR NR NR NR 
 Fukutake et al65  669 1.5 1.5 0/0 
Children and young adults: reported person-y          
 Andersson et al3  29* 29* 2* 8038 3.6* 3.6* 0.3* NR 
  0 to <1   244 16.4     
  1 to <2   489 18.4     
  2 to <3   535 7.5     
  3 to <4   499 8.0     
  4 to <5   508 3.9     
  5 to <6   494 2.0     
  6 to <13   3247 0.6     
  13 to <19   1878 1.6     
  19 to <22   145     
 Traivaree et al23  8* 11* 0* 1584 5.0* 7.3* 0* NR 
 Hu et al24  13* 13* 0* 653 19.9* 19.9* 0* NR NR 
 Haque et al66  52 61 1444 36.0 42.2 3.5 10 NR 
 Loomans et al8  NR NR 21953 NR NR 0.1 NR NR 
  0-9   10831   0.2   
  10-19   11122   0.1   
 Darby et al14  NR NR 23 42164 NR NR  NR 23/51 (45) 
  0-4   14 6450   0.5   
  5-14   15000   2.2   
  15-24   714   0.1   
 Chalmers  et al6  54 59 9000 6.0 6.6 0.9 15 NR 
 36* 41*   4.0* 4.6*    
Children and young adults: estimated person-y          
 Bladen et al17  26 30 4691 5.5 6.4 0.9 15 NR 
 12* 16* 0*  2.6* 3.4* 0* 0*  
 Revel-Vilk et al16  18 25 NR 1582 11.4 15.8 NR NR NR 
 13* 20*   8.2* 12.6*    
 Carneiro et al67           
  Brazil NR 650 13.8 13.8 NR NR NR 
  Canada  605 6.6 6.6    
 Nelson et al68  36 48 NR 3832 9.4 12.5 NR NR 2/45 (0) 
 Poonnoose et al69  3* 3* 1* 1145 2.6* 2.6* 0.9* 33 1/2 (50) 
 Klinge et al 15  30 NR 7466 4.0 NR 0.1 NR 
 19*    2.5*     
 Meunier et al70  22 NR NR 4198 5.2 NR NR NR NR 
 Öner et al71  1587 5.0 5.0 1.3 25 2/2 (100) 
 Kulkarni et al25  37 46 NR 1094 33.8 42.0 NR NR NR 
Neonates          
 Ljung et al26  NR NR 117 3.4 NR NR NR NR 
 MacLean et al72  NR NR 73 1.4 NR NR NR NR 
 Kenet et al27  22 NR NR 633 3.5 NR NR NR NR 
 Richards et al28  NR 508 0.8 NR NR 
 Nazir et al29  NR 163 3.1 3.1 NR NR NR 
 Palomo Bravo et al73  NR 88 NR NR NR 
 Andersson et al30  20 NR 926 2.2 NR 0.1 NR 
 Yoffe and Buchanan74  NR 150 3.3 3.3 NR NR NR 
 Klinge et al15  11 NR NR 744 1.5 NR NR NR NR 
 Revel-Vilk et al16  NR 172 2.9 2.9 NR NR NR 
 Bladen et al17  14 NR 431 3.2 NR 0.9 29 NR 
 Chalmers et al6  18 NR NR 1321 1.4 NR NR NR NR 

Studies are categorized according to group (lifetime; children and young adults; neonates) and how person-y of follow-up were retrieved (reported or estimated). The number of persons with ICH was used to calculate the ICH single-event incidence rate. The number of ICH events was used to calculate the ICH multiple-event incidence rate.

NR, not reported.

*

Neonatal ICH not included, specified for studies within the group “children and young adults.”

This number was retrieved from a subset of patients who entered a prospective 4-y follow-up. All 45 deaths occurred in HIV+ patients.

The total number of deceased patients in this pediatric cohort was known, but neonates were not distinguished from older children.

ICH mortality

Figure 3 represents the pooled analyses of ICH mortality among the 3 age groups. Over lifetime, the pooled ICH mortality rate was 0.8 (95% CI, 0.5-1.2) per 1000 person-years, calculated over 16 studies. Case fatality ranged from 0% to 29%. A total of 3237 deaths were reported, of which 483 were related to intracranial bleeding (range, 4-36% of all deaths). In children and young adults younger than 25 years, the pooled ICH mortality rate was 0.5 (95% CI, 0.3-0.9) per 1000 person-years, calculated over 11 studies. When restricted to 5 pediatric studies without neonatal ICH, the pooled ICH mortality rate was 0.2 (95% CI, 0.1-0.6) per 1000 person-years (supplemental Figure 2E). Case fatality ranged from 0% to 33%. In neonates, the pooled ICH cumulative mortality was 0.2% (95% CI, 0.0-1.2) per 100 live births, calculated over 3 studies. Case fatality ranged from 0% to 29%. In 2 studies reporting mortality among different age categories, the highest ICH mortality rates were observed in children 0 to 4 years of age and in adults from age 40 to 50 years onward (Table 2; supplemental Figure 3).8,14

Figure 3.

Pooled analyses of ICH mortality for lifetime, children and young adults younger than 25 years, and neonates. The diamond represents the pooled estimate. (A) Pooled ICH mortality rates per 1000 person-years for lifetime cohorts. The study of Fransen van de Putte (2012)18 was excluded from the analysis because of overlap in the catchment area and population with the studies from Rosendaal et al (1989),44 Triemstra et al (1995),46 and Plug et al (2006).45 The study by Darby et al (2007)14 (HIV) was excluded from the analysis because of overlap in the catchment area and population with the studies by Rizza and Spooner (1983)61 and Rizza et al (2001)62 (including HIV+ and HIV patients). The results from the complete follow-up period (retrospective and prospective follow-up) from Zanon et al (2012)19 were used in this analysis because fatal events were not described for the prospective follow-up period only. (B) Pooled ICH mortality rates per 1000 person-years for children and young adults younger than 25 years. The studies by Andersson et al (2017),3 Traivaree et al (2007),23 Hu et al (2018),23 and Poonnoose et al (2017)69 did not include neonatal ICH. (C) Pooled ICH cumulative mortality per 100 live births for neonates.

Figure 3.

Pooled analyses of ICH mortality for lifetime, children and young adults younger than 25 years, and neonates. The diamond represents the pooled estimate. (A) Pooled ICH mortality rates per 1000 person-years for lifetime cohorts. The study of Fransen van de Putte (2012)18 was excluded from the analysis because of overlap in the catchment area and population with the studies from Rosendaal et al (1989),44 Triemstra et al (1995),46 and Plug et al (2006).45 The study by Darby et al (2007)14 (HIV) was excluded from the analysis because of overlap in the catchment area and population with the studies by Rizza and Spooner (1983)61 and Rizza et al (2001)62 (including HIV+ and HIV patients). The results from the complete follow-up period (retrospective and prospective follow-up) from Zanon et al (2012)19 were used in this analysis because fatal events were not described for the prospective follow-up period only. (B) Pooled ICH mortality rates per 1000 person-years for children and young adults younger than 25 years. The studies by Andersson et al (2017),3 Traivaree et al (2007),23 Hu et al (2018),23 and Poonnoose et al (2017)69 did not include neonatal ICH. (C) Pooled ICH cumulative mortality per 100 live births for neonates.

Close modal

Spontaneous ICH and locations

Over lifetime, 6 studies reported on ICH causes. A total of 231 of 447 events (52%) were classified as spontaneous, with a weighted pooled proportion of 0.58 (95% CI, 0.40-0.73).8,18-22 In children and young adult populations, 6 studies reported on ICH causes. A total of 53 of 151 events (35%) were classified as spontaneous, with a weighted pooled proportion of 0.35 (95% CI, 0.28-0.43).3,15,16,23-25 In neonates, 5 studies reported on ICH related to mode of delivery. An ICH occurred after 32 of 1488 (2%) spontaneous vaginal deliveries, 7 of 514 (1%) caesarean sections, and 14 of 140 (10%) assisted vaginal deliveries.26-30 The most frequently reported locations of ICH were intraparenchymal and subdural hemorrhages in all age groups (Table 3).

Table 3.

Locations of ICH

Lifetime (2 studies)19,21Children & young adults (5 studies)15,23-25,68Neonates (4 studies)27-29,74
Reported bleeds, total (%) 200 148 36 
 Intraparenchymal 82 (41) 33 (22) 9 (25) 
 Subdural 60 (30) 50 (34) 21 (58) 
 Subarachnoid 17 (9) 10 (7) 1 (3) 
 Epidural 11 (6) 13 (9) 1 (3) 
 Intraventricular 12 (6)* 12 (8) 2 (6) 
 Unknown 18 (9) 9 (6) 0 (0) 
 Multiple sites 0 (0) 21 (14) 2 (6) 
Lifetime (2 studies)19,21Children & young adults (5 studies)15,23-25,68Neonates (4 studies)27-29,74
Reported bleeds, total (%) 200 148 36 
 Intraparenchymal 82 (41) 33 (22) 9 (25) 
 Subdural 60 (30) 50 (34) 21 (58) 
 Subarachnoid 17 (9) 10 (7) 1 (3) 
 Epidural 11 (6) 13 (9) 1 (3) 
 Intraventricular 12 (6)* 12 (8) 2 (6) 
 Unknown 18 (9) 9 (6) 0 (0) 
 Multiple sites 0 (0) 21 (14) 2 (6) 
*

Intraventricular bleeds were not reported by Nuss et al.21 

Sensitivity analyses

The results of all pooled analyses and sensitivity analyses are summarized in Table 4. The forest plots of the sensitivity analyses can be found in supplemental Figures 1 and 2. For lifetime and neonatal cohorts, the sensitivity analyses produced similar ICH incidence and mortality rates. For children and young adults, the sensitivity analyses yielded higher ICH incidence rates when studies with reported exact number of person-years were included and lower ICH incidence rates when studies that met ≥80% of the quality items were included. Similar ICH mortality rates were found. No consistent differences in ICH rates were observed between hemophilia A and B (supplemental Table 6). Higher ICH rates were reported for adult and pediatric populations in nonhigh-income settings compared with high-income countries (supplemental Table 7).

Table 4.

Overview of pooled analyses of ICH incidence and mortality

LifetimeChildren and young adultsNeonates*
All studiesStudies without neonatal ICH
Pooled ICH single-event incidence rate per 1000 person-years (95% CI)     
 All included studies 2.3 (1.2-4.8) 7.4 (4.9-11.1) 4.5 (2.7-7.5) 2.1 (1.5-2.8) 
 Sensitivity analysis: only studies with reported person-years 3.2 (2.1-4.7) 9.4 (4.3-20.6) 5.9 (3.0-11.3) NA 
 Sensitivity analysis: only studies that met ≥80% of the quality items 3.2 (2.1-4.9) 5.0 (3.8-6.4) 3.5 (2.8-4.4) 1.7 (1.1-2.7) 
Pooled ICH mortality rate per 1000 person-years (95% CI)     
 All included studies 0.8 (0.5-1.2) 0.5 (0.3-0.9) 0.2 (0.1-0.6) 0.2 (0.0-1.2) 
 Sensitivity analysis: only studies with reported person-years 0.8 (0.4-1.3) 0.4 (0.2-1.1) 0.2 (0.1-0.8) NA 
 Sensitivity analysis: only studies that met ≥ 80% of the quality items 0.6 (0.4-1.1) 0.6 (0.4-1.1) 0.2 (0.0-0.6) 0.2 (0.0-1.2) 
LifetimeChildren and young adultsNeonates*
All studiesStudies without neonatal ICH
Pooled ICH single-event incidence rate per 1000 person-years (95% CI)     
 All included studies 2.3 (1.2-4.8) 7.4 (4.9-11.1) 4.5 (2.7-7.5) 2.1 (1.5-2.8) 
 Sensitivity analysis: only studies with reported person-years 3.2 (2.1-4.7) 9.4 (4.3-20.6) 5.9 (3.0-11.3) NA 
 Sensitivity analysis: only studies that met ≥80% of the quality items 3.2 (2.1-4.9) 5.0 (3.8-6.4) 3.5 (2.8-4.4) 1.7 (1.1-2.7) 
Pooled ICH mortality rate per 1000 person-years (95% CI)     
 All included studies 0.8 (0.5-1.2) 0.5 (0.3-0.9) 0.2 (0.1-0.6) 0.2 (0.0-1.2) 
 Sensitivity analysis: only studies with reported person-years 0.8 (0.4-1.3) 0.4 (0.2-1.1) 0.2 (0.1-0.8) NA 
 Sensitivity analysis: only studies that met ≥ 80% of the quality items 0.6 (0.4-1.1) 0.6 (0.4-1.1) 0.2 (0.0-0.6) 0.2 (0.0-1.2) 

All forest plots of the presented pooled data can be found in supplemental material.

NA, not applicable for studies on the neonatal period, as all included studies on neonates report exact numbers of live births. 

*

Cumulative incidence and mortality presented per 100 live births (95% CI) for pooled analyses of studies on neonates.

In this systematic review, we summarized the data from 45 studies to obtain more precise estimates of ICH incidence and mortality rates in hemophilia. We observed peak incidences among neonates, with a decline in childhood, and a lower ICH incidence found for the lifetime cohorts. For half of the included studies the exact number of observed person-years was reported, and 37% of all studies met ≥80% of the methodological quality items. Still, the sensitivity analyses yielded robust pooled estimates for the majority of the evaluations. An exception formed the inconclusive results of the sensitivity analyses for ICH incidence rates in children and young adults younger than 25 years. This may be explained by greater differences in setting and the different proportions of neonates among studies. Indeed, heterogeneity of data was considerable because of the diversity in settings and populations. The most important source of heterogeneity seemed to be the large geographic variation in ICH risk, because studies conducted in nonhigh-income countries reported substantially higher ICH incidences compared with studies from high-income countries. In addition, it is likely that other factors, including age, disease severity, and treatment, contributed to clinical heterogeneity.

ICH incidence and mortality

The observed ICH rates in hemophilia were higher compared with the general populations among all age groups addressed in this review. Neonates have the highest risk of ICH, which is confirmed by recent work from the PedNet group in severe hemophilia demonstrating that neonates were at 11.2 times higher risk for ICH compared with 1- to 12-month-old children.4 Moreover, the risk of ICH in neonates with hemophilia is strongly increased compared with neonates in the general population. A large study of term infants reported 361 intracranial bleeding episodes per 583 340 live births (0.062% per 100 live births).31 Comparing this with our pooled estimate of 2.1% per 100 live births, hemophilic neonates have a 33-fold higher risk for ICH than do newborns in the general population.

Despite the decrease in ICH risk after the neonatal period, ICH remains relatively common in children and young adults with hemophilia. This risk seems most profound in the group of infants and toddlers, which is supported by previous work reporting a median age at ICH of 2 years (interquartile range, 0.6-7.3) in a pediatric hemophilia population.32 Our pooled estimate of 7.4 cases per 1000 person-years for children and young adults with hemophilia decreased to a pooled estimate of 4.5 cases per 1000 person-years when neonatal ICH was excluded. This reflects the important contribution of neonatal bleeds to the high ICH incidence in patients up to 25 years of age. Nonetheless, the pooled ICH incidence rates in both groups are considerably higher than the risk for intraparenchymal and subarachnoid hemorrhage in the general pediatric population, which is estimated at 0.01 cases per 1000 person-years.33,34 For subdural hematoma, the incidence was 0.13 per 1000 person-years for infants aged 0 to 2 years in the general population.35 Additionally, the estimated death rate for childhood hemorrhagic stroke in the Global Burden of Disease study 2013 was 0.01 cases per 1000.36 These data suggest that young children with hemophilia are a vulnerable group, and increased counseling and protection may be required.

Additionally, our pooled ICH incidence rate of 2.3 per 1000 person-years in patients with hemophilia over lifetime is higher compared with the general population, in which the incidences of intracerebral hemorrhage, subarachnoid hemorrhage, and chronic subdural hematoma were estimated at 0.25, 0.09, and 0.17 cases per 1000 person-years, respectively.37-39 Also for mortality rates, our pooled ICH estimate of 0.8 per 1000 person-years in hemophilia is increased compared with the age-adjusted mortality rates in developed countries (0.22 per 1000 person-years) and globally (0.53 per 1000 person-years).40 Because mortality risk is associated with ICH type, different distributions of ICH types among studies complicate direct comparisons of ICH mortality rates between cohorts. In addition, it needs to be emphasized that our lifetime ICH estimates act as cumulative lifetime risks on a population level rather than risks applicable to an individual of a specific age. Although it is well known that ICH risk increases with advancing age in hemophilia and in the general population,37 this ICH risk seems to follow an U-shaped curve over lifetime in hemophilia. Previous studies observed peak incidences in neonates, young children aged 0 to 4 years, and in older patients from age 40 to 50 years onward.14,19,22 Only 3 studies provided age-stratified ICH rates in our review, which hampered a robust assessment for particular groups of interest, such as elderly patients and young children. The scarcity of evidence on age-specific ICH incidences highlights the need for age stratification in future studies.

Determinants of ICH

Several determinants have been described to increase ICH risk in populations with hemophilia, including age, severe hemophilia, HIV infection, inhibitors, prior ICH, on demand therapy, and African American ethnicity.3,21,22,41 We did not find any clear difference in ICH rates between hemophilia A and B, which is in line with previous reports.14,21,22 The influence of potential determinants of ICH risk was beyond the scope of the current study and warrants more detailed evaluation in future reviews. To gain insight into the characteristics of ICH in this population, we investigated the occurrence of spontaneous ICH and locations of intracranial bleeds. We observed that spontaneous hemorrhages were relatively common, with pooled proportions of 0.58 for lifetime ICH and 0.35 for ICH in children and young adults with hemophilia. However, trivial head trauma without clear impact may easily lead to misclassification as spontaneous hemorrhage. Especially for subdural hematomas, the majority of bleeds are preceded by trauma and true spontaneous bleeds seem to be rare.42,43 In neonates, we found a higher percentage of ICH events after assisted vaginal delivery, which is a well-known risk factor for intracranial bleeds.7,31 It has yet to be determined how improved care and life expectancy of patients with hemophilia will influence the incidence of ICH in the coming decades. Better care and fewer HIV infections may reduce ICH risk, whereas, on the other hand, age-related comorbidities provoking ICH may become more common. We included 3 consecutive cohort studies in The Netherlands in our review, which reported ICH mortality rates of 0.4, 1.6, and 0.5 cases per 1000 person-years in the periods from 1973 to 1986, 1986 to 1992, and 1992 to 2001, respectively.44-46 However, the most recent study from this group reported an increase in the ICH mortality rate to 1.3 cases per 1000 person-years in the period from 2001 to 2018.47 It is uncertain to what extent comorbidities may have contributed to this risk, and it highlights the need for further research into (preventable) determinants to mitigate the occurrence of intracranial bleeding in hemophilia.

Clinical implications

Our findings suggest that adequate follow-up and monitoring of patients are warranted among all ages, especially in the presence of risk factors. Prophylaxis seems to halve ICH risk in children and adults with severe hemophilia,3,22 which supports existing recommendations encouraging early initiation of prophylactic treatment.48 Future studies are required to evaluate to what extent novel nonreplacement and gene therapies reduce ICH risk. In particular, there is an urgent need to investigate the benefits of novel therapies in young children. Furthermore, research should focus on the role of established ICH risk factors, such as hypertension, and the concomitant use of antithrombotic agents,49,50 which may become increasingly prevalent in the ageing hemophilia population as comorbidities increase. In light of the observed higher prevalence of hypertension in patients with hemophilia compared with the general population and the associated risk of bleeding, the recently published World Federation of Hemophilia guidelines recommend regular hypertension screening in all patients with hemophilia.51 The potential effect of this pragmatic approach has yet to be established. Other practical suggestions may include adequate counseling of patients with hemophilia and their families on ICH risks and symptoms. In case of a suspected brain hemorrhage or head trauma, clinical management should take place at a hemophilia treatment facility. In neonates, our data support the need for an active pedigree approach for genetic testing and comprehensive counseling of pregnant carriers. When an affected infant is expected, invasive procedures should be avoided, as recommended.52 However, it should be noted that ∼50% of affected neonates are born without a known family history, hampering any precautionary perinatal measures. We reported ICH incidences of 0.062% in neonates in the general population and 2.1% in neonates with hemophilia. Because hemophilia occurs in ∼1 per 5000 live male births,53 it can be estimated that 1 in every 150 male neonates presenting with ICH is affected with hemophilia. This encourages early diagnostic work-up for bleeding disorders in newborns with unexplained ICH.

Strengths and limitations

To our knowledge, this is the first systematic review of lifetime ICH incidence and mortality rates in hemophilia. The strengths of our review are the quality assessments and calculation and estimation of rates taking time under observation into account, which made inclusion of many studies possible. Furthermore, because standard meta-analysis methods may give biased results in the event of sparse or no event data, we applied random-effects generalized linear mixed models.12 Our study also had several limitations. Accurate capture of the true frequency of ICH is challenged by considerable clinical heterogeneity. Included studies were heterogeneous in terms of setting, time period, population characteristics, and types of ICH, limiting precision and generalizability of the pooled estimates. Most studies used a retrospective design, increasing the chance of survivor bias. Thus, undiagnosed neonates who died from ICH may have been missed. In addition, some studies evaluated ICH in cohorts that consisted of living patients only; as a consequence, they lacked fatal ICH events. Consequently, incidence is likely to be underestimated. Future reviews are needed to robustly assess how established risk factors contribute to ICH occurrence in this population. Other limitations arise from limited data on person-years. For 19 studies, we estimated the number of person-years, because it was not reported in the original article; this might have differed from the actual number of person-years. However, the sensitivity analyses that included studies with exact person-years demonstrated similar ICH rates for most populations. In spite of these limitations, this study is a systematic compilation of available evidence on ICH incidence and mortality rates in hemophilia.

Conclusions

In this systematic review and meta-analysis, we found high ICH incidence and mortality rates in patients with hemophilia. Our findings suggest that ICH is still an important problem in hemophilia requiring adequate counseling of patients of all ages.

The authors thank René Spijker (Amsterdam University Medical Center [Amsterdam UMC], Amsterdam, The Netherlands) for expert support in designing the literature search, and Mike Soucie Division of Blood Disorders, Centers for Disease Control and Prevention, Atlanta, GA, Evelien Mauser-Bunschoten (Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands), and Amanda Okolo (Indiana Hemophilia and Thrombosis Center, Indianapolis, IN) for providing clarifying details for their studies.

This work was supported by a grant from Sobi.

Contribution: A.F.-Z., S.C.G., M.C., J.G.V.d.B., and K.F. designed the research; Q.H., X.F., and S.K.K. contributed data; A.-F.Z., J.S.J., C.V., and S.C.G. collected and interpreted data; A.F.-Z. analyzed data; A.F.-Z., S.C.G., and K.F. wrote the manuscript; and all authors approved the final version of the manuscript.

Conflict-of-interest disclosure: S.C.G. has received an unrestricted research grant from Sobi. M.C. has received financial research support from Bayer, CSL Behring, Daiichi Sankyo, Portola/Alexion, Roche, Sanquin Blood Supply Foundation, and uniQure and consultancy or lecture fees from Bayer, CSL Behring, MEDCON International, MEDtalks, Novo Nordisk, Pfizer, and Sobi. J.G.V.d.B. has received unrestricted institutional research grants from Novo Nordisk and her institution received consultancy/lecturing fees from Bayer. K.F. has received unrestricted institutional research grants from Sobi, Pfizer, CSL Behring, and Novo Nordisk and her institution has consultancy fees from Grifols, Takeda, Novo Nordisk, and Roche. The remaining authors declare no competing financial interests.

Correspondence: Karin Fijnvandraat, Department of Pediatric Hematology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; e-mail: c.j.fijnvandraat@amsterdamumc.nl.

All data analyzed for this study can be derived from the tables and supplemental material.

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

1.
White
GC
II
,
Rosendaal
F
,
Aledort
LM
,
Lusher
JM
,
Rothschild
C
,
Ingerslev
J
;
Factor VIII and Factor IX Subcommittee
.
Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis
.
Thromb Haemost.
2001
;
85
(
3
):
560
.
2.
de Tezanos Pinto
M
,
Fernandez
J
,
Perez Bianco
PR
.
Update of 156 episodes of central nervous system bleeding in hemophiliacs
.
Haemostasis.
1992
;
22
(
5
):
259
-
267
.
3.
Andersson
NG
,
Auerswald
G
,
Barnes
C
, et al
.
Intracranial haemorrhage in children and adolescents with severe haemophilia A or B - the impact of prophylactic treatment
.
Br J Haematol.
2017
;
179
(
2
):
298
-
307
.
4.
Andersson
NG
,
Wu
R
,
Carcao
M
, et al;
ICH study group
.
Long-term follow-up of neonatal intracranial haemorrhage in children with severe haemophilia
.
Br J Haematol.
2020
;
190
(
2
):
e101
-
e104
.
5.
Ljung
RC
.
Intracranial haemorrhage in haemophilia A and B
.
Br J Haematol.
2008
;
140
(
4
):
378
-
384
.
6.
Chalmers
EA
,
Alamelu
J
,
Collins
PW
, et al;
Paediatric & Rare Disorders Working Parties of the UK Haemophilia Doctors Organization
.
Intracranial haemorrhage in children with inherited bleeding disorders in the UK 2003-2015: a national cohort study
.
Haemophilia.
2018
;
24
(
4
):
641
-
647
.
7.
Davies
J
,
Kadir
RA
.
Mode of delivery and cranial bleeding in newborns with haemophilia: a systematic review and meta-analysis of the literature
.
Haemophilia.
2016
;
22
(
1
):
32
-
38
.
8.
Loomans
JI
,
Eckhardt
CL
,
Reitter-Pfoertner
SE
, et al
.
Mortality caused by intracranial bleeding in non-severe hemophilia A patients
.
J Thromb Haemost.
2017
;
15
(
6
):
1115
-
1122
.
9.
Moher
D
,
Liberati
A
,
Tetzlaff
J
,
Altman
DG
;
PRISMA Group
.
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
.
PLoS Med.
2009
;
6
(
7
):
e1000097
.
10.
Munn
Z
,
Moola
S
,
Lisy
K
,
Riitano
D
,
Tufanaru
C
.
Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data
.
Int J Evid-Based Healthc.
2015
;
13
(
3
):
147
-
153
.
11.
Munn
Z
,
Moola
S
,
Lisy
K
,
Riitano
D
,
Tufunaru
C
. Chapter 5: systematic reviews of prevalence and incidence. In:
Aromataris
E
,
Munn
Z
, eds.
Joanna Briggs Institute Reviewer’s Manual.
Adelaide, Australia
:
The Joanna Briggs Institute
;
2017
:
177
-
217
.
12.
Stijnen
T
,
Hamza
TH
,
Ozdemir
P
.
Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
.
Stat Med.
2010
;
29
(
29
):
3046
-
3067
.
13.
Rothman
KJ
,
Boice
JD
Jr
.
Epidemiologic Analysis With a Programmable Calculator.
Boston, MA
:
Epidemiology Resources Inc
.;
1979
.
14.
Darby
SC
,
Kan
SW
,
Spooner
RJ
, et al
.
Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV
.
Blood.
2007
;
110
(
3
):
815
-
825
.
15.
Klinge
J
,
Auberger
K
,
Auerswald
G
,
Brackmann
HH
,
Mauz-Körholz
C
,
Kreuz
W
.
Prevalence and outcome of intracranial haemorrhage in haemophiliacs–a survey of the paediatric group of the German Society of Thrombosis and Haemostasis (GTH)
.
Eur J Pediatr.
1999
;
158
(
suppl 3
):
S162
-
S165
.
16.
Revel-Vilk
S
,
Golomb
MR
,
Achonu
C
, et al
.
Effect of intracranial bleeds on the health and quality of life of boys with hemophilia
.
J Pediatr.
2004
;
144
(
4
):
490
-
495
.
17.
Bladen
M
,
Main
E
,
Khair
K
,
Hubert
N
,
Koutoumanou
E
,
Liesner
R
.
The incidence, risk and functional outcomes of intracranial haemorrhage in children with inherited bleeding disorders at one haemophilia center
.
Haemophilia.
2016
;
22
(
4
):
556
-
563
.
18.
Fransen van de Putte
DE
,
Fischer
K
,
Pulles
AE
, et al
.
Non-fatal cardiovascular disease, malignancies, and other co-morbidity in adult haemophilia patients
.
Thromb Res.
2012
;
130
(
2
):
157
-
162
.
19.
Zanon
E
,
Iorio
A
,
Rocino
A
, et al;
Italian Association of Hemophilia Centers
.
Intracranial haemorrhage in the Italian population of haemophilia patients with and without inhibitors
.
Haemophilia.
2012
;
18
(
1
):
39
-
45
.
20.
Chuansumrit
A
,
Krasaesub
S
,
Angchaisuksiri
P
,
Hathirat
P
,
Isarangkura
P
.
Survival analysis of patients with haemophilia at the International Haemophilia Training Centre, Bangkok, Thailand
.
Haemophilia.
2004
;
10
(
5
):
542
-
549
.
21.
Nuss
R
,
Soucie
JM
,
Evatt
B
;
Hemophilia Surveillance System Project Investigators
.
Changes in the occurrence of and risk factors for hemophilia-associated intracranial hemorrhage
.
Am J Hematol.
2001
;
68
(
1
):
37
-
42
.
22.
Witmer
C
,
Presley
R
,
Kulkarni
R
,
Soucie
JM
,
Manno
CS
,
Raffini
L
.
Associations between intracranial haemorrhage and prescribed prophylaxis in a large cohort of haemophilia patients in the United States
.
Br J Haematol.
2011
;
152
(
2
):
211
-
216
.
23.
Traivaree
C
,
Blanchette
V
,
Armstrong
D
,
Floros
G
,
Stain
AM
,
Carcao
MD
.
Intracranial bleeding in haemophilia beyond the neonatal period–the role of CT imaging in suspected intracranial bleeding
.
Haemophilia.
2007
;
13
(
5
):
552
-
559
.
24.
Hu
Q
,
Zhang
A
,
Liu
AG
,
Wang
SM
,
Wang
YQ
,
Zhang
LQ
.
A retrospective analysis of intracranial hemorrhage in children with hemophilia A
.
Curr Med Sci.
2018
;
38
(
5
):
875
-
879
.
25.
Kulkarni
R
,
Presley
RJ
,
Lusher
JM
, et al
.
Complications of haemophilia in babies (first two years of life): a report from the Centers for Disease Control and Prevention Universal Data Collection System
.
Haemophilia.
2017
;
23
(
2
):
207
-
214
.
26.
Ljung
R
,
Lindgren
AC
,
Petrini
P
,
Tengborn
L
.
Normal vaginal delivery is to be recommended for haemophilia carrier gravidae
.
Acta Paediatr.
1994
;
83
(
6
):
609
-
611
.
27.
Kenet
G
,
Chan
AK
,
Soucie
JM
,
Kulkarni
R
.
Bleeding disorders in neonates
.
Haemophilia.
2010
;
16
(
suppl 5
):
168
-
175
.
28.
Richards
M
,
Lavigne Lissalde
G
,
Combescure
C
, et al;
European Haemophilia Treatment and Standardization Board
.
Neonatal bleeding in haemophilia: a European cohort study
.
Br J Haematol.
2012
;
156
(
3
):
374
-
382
.
29.
Nazir
HF
,
Al Lawati
T
,
Beshlawi
I
, et al
.
Mode of delivery and risk of intracranial haemorrhage in newborns with severe haemophilia A: a multicentre study in Gulf region
.
Haemophilia.
2016
;
22
(
3
):
e134
-
e138
.
30.
Andersson
NG
,
Chalmers
EA
,
Kenet
G
,
Ljung
R
,
Mäkipernaa
A
,
Chambost
H
;
PedNet Haemophilia Research Foundation
.
Mode of delivery in hemophilia: vaginal delivery and Cesarean section carry similar risks for intracranial hemorrhages and other major bleeds
.
Haematologica.
2019
;
104
(
10
):
2100
-
2106
.
31.
Towner
D
,
Castro
MA
,
Eby-Wilkens
E
,
Gilbert
WM
.
Effect of mode of delivery in nulliparous women on neonatal intracranial injury
.
N Engl J Med.
1999
;
341
(
23
):
1709
-
1714
.
32.
Witmer
CM
.
Low mortality from intracranial haemorrhage in paediatric patients with haemophilia
.
Haemophilia.
2015
;
21
(
5
):
e359
-
e363
.
33.
Jordan
LC
,
Hillis
AE
.
Hemorrhagic stroke in children
.
Pediatr Neurol.
2007
;
36
(
2
):
73
-
80
.
34.
Fullerton
HJ
,
Wu
YW
,
Zhao
S
,
Johnston
SC
.
Risk of stroke in children: ethnic and gender disparities
.
Neurology.
2003
;
61
(
2
):
189
-
194
.
35.
Hobbs
C
,
Childs
AM
,
Wynne
J
,
Livingston
J
,
Seal
A
.
Subdural haematoma and effusion in infancy: an epidemiological study
.
Arch Dis Child.
2005
;
90
(
9
):
952
-
955
.
36.
Krishnamurthi
RV
,
deVeber
G
,
Feigin
VL
, et al;
GBD 2013 Stroke Panel Experts Group
.
Stroke prevalence, mortality and disability-adjusted life years in children and youth aged 0-19 Years: data from the Global and Regional Burden of Stroke 2013
.
Neuroepidemiology.
2015
;
45
(
3
):
177
-
189
.
37.
van Asch
CJ
,
Luitse
MJ
,
Rinkel
GJ
,
van der Tweel
I
,
Algra
A
,
Klijn
CJ
.
Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis
.
Lancet Neurol.
2010
;
9
(
2
):
167
-
176
.
38.
de Rooij
NK
,
Linn
FH
,
van der Plas
JA
,
Algra
A
,
Rinkel
GJ
.
Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends
.
J Neurol Neurosurg Psychiatry.
2007
;
78
(
12
):
1365
-
1372
.
39.
Balser
D
,
Farooq
S
,
Mehmood
T
,
Reyes
M
,
Samadani
U
.
Actual and projected incidence rates for chronic subdural hematomas in United States Veterans Administration and civilian populations
.
J Neurosurg.
2015
;
123
(
5
):
1209
-
1215
.
40.
Feigin
VL
,
Krishnamurthi
RV
,
Parmar
P
, et al;
GBD 2013 Stroke Panel Experts Group
.
Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: The GBD 2013 Study
.
Neuroepidemiology.
2015
;
45
(
3
):
161
-
176
.
41.
Koumbarelis
E
,
Rosendaal
FR
,
Gialeraki
A
, et al
.
Epidemiology of haemophilia in Greece: an overview
.
Thromb Haemost.
1994
;
72
(
6
):
808
-
813
.
42.
Morris
NA
,
Merkler
AE
,
Parker
WE
, et al
.
Adverse outcomes after initial non-surgical management of subdural hematoma: a population-based study
.
Neurocrit Care.
2016
;
24
(
2
):
226
-
232
.
43.
Akioka
N
,
Fukuda
O
,
Takaba
M
,
Kameda
H
,
Saito
T
,
Endo
S
.
Clinical investigation of acute spontaneous subdural hematoma cases
.
J Stroke Cerebrovasc Dis.
2007
;
16
(
3
):
109
-
113
.
44.
Rosendaal
FR
,
Varekamp
I
,
Smit
C
, et al
.
Mortality and causes of death in Dutch haemophiliacs, 1973-86
.
Br J Haematol.
1989
;
71
(
1
):
71
-
76
.
45.
Plug
I
,
Van Der Bom
JG
,
Peters
M
, et al
.
Mortality and causes of death in patients with hemophilia, 1992-2001: a prospective cohort study
.
J Thromb Haemost.
2006
;
4
(
3
):
510
-
516
.
46.
Triemstra
M
,
Rosendaal
FR
,
Smit
C
,
Van der Ploeg
HM
,
Briët
E
.
Mortality in patients with hemophilia. Changes in a Dutch population from 1986 to 1992 and 1973 to 1986
.
Ann Intern Med.
1995
;
123
(
11
):
823
-
827
.
47.
Hassan
S
,
Monahan
RC
,
Mauser-Bunschoten
EP
, et al
.
Mortality, life expectancy and causes of death of persons with hemophilia in the Netherlands 2001-2018
.
J Thromb Haemost.
2021
;
19
(
3
):
645
-
653
.
48.
Oldenburg
J
.
Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens
.
Blood.
2015
;
125
(
13
):
2038
-
2044
.
49.
Rincon
F
,
Mayer
SA
.
Clinical review: citical care management of spontaneous intracerebral hemorrhage
.
Crit Care.
2008
;
12
(
6
):
237
.
50.
Lovelock
CE
,
Molyneux
AJ
,
Rothwell
PM
;
Oxford Vascular Study
.
Change in incidence and aetiology of intracerebral haemorrhage in Oxfordshire, UK, between 1981 and 2006: a population-based study
.
Lancet Neurol.
2007
;
6
(
6
):
487
-
493
.
51.
Srivastava
A
,
Santagostino
E
,
Dougall
A
, et al
.
WFH Guidelines for the Management of Hemophilia, 3rd edition
.
Haemophilia.
2020
;
26
(
suppl 6
):
1
-
158
.
52.
Lee
CA
,
Chi
C
,
Pavord
SR
, et al;
UK Haemophilia Centre Doctors’ Organization
.
The obstetric and gynaecological management of women with inherited bleeding disorders–review with guidelines produced by a taskforce of UK Haemophilia Centre Doctors’ Organization
.
Haemophilia.
2006
;
12
(
4
):
301
-
336
.
53.
Soucie
JM
,
Evatt
B
,
Jackson
D
;
The Hemophilia Surveillance System Project Investigators
.
Occurrence of hemophilia in the United States
.
Am J Hematol.
1998
;
59
(
4
):
288
-
294
.
54.
Khair
K
,
Mazzucconi
MG
,
Parra
R
, et al
.
Pattern of bleeding in a large prospective cohort of haemophilia A patients: a three-year follow-up of the AHEAD (Advate in HaEmophilia A outcome Database) study
.
Haemophilia.
2018
;
24
(
1
):
85
-
96
.
55.
Yoo
KY
,
Kim
SK
,
Kwon
SS
, et al
.
Life expectancy of Korean haemophiliacs, 1991-2012
.
Haemophilia.
2014
;
20
(
4
):
e356
-
e358
.
56.
Shih
MY
,
Wang
JD
,
Yin
JD
,
Tsan
YT
,
Chan
WC
.
Differences in major bleeding events between patients with severe hemophilia A and hemophilia B: a nationwide, population-based cohort study
.
Clin Appl Thromb Hemost.
2019
;
25
:
1076029619888023
.
57.
Fransen van de Putte
DE
,
Fischer
K
,
Makris
M
, et al
.
History of non-fatal cardiovascular disease in a cohort of Dutch and British patients with haemophilia
.
Eur J Haematol.
2012
;
89
(
4
):
336
-
339
.
58.
Lövdahl
S
,
Henriksson
KM
,
Baghaei
F
, et al
.
Incidence, mortality rates and causes of deaths in haemophilia patients in Sweden
.
Haemophilia.
2013
;
19
(
3
):
362
-
369
.
59.
Reitter
S
,
Waldhoer
T
,
Vutuc
C
,
Lechner
K
,
Pabinger
I
.
Survival in a cohort of patients with haemophilia at the haemophilia care center in Vienna, Austria, from 1983 to 2006
.
Haemophilia.
2009
;
15
(
4
):
888
-
893
.
60.
Sharathkumar
AA
,
Soucie
JM
,
Trawinski
B
,
Greist
A
,
Shapiro
AD
.
Prevalence and risk factors of cardiovascular disease (CVD) events among patients with haemophilia: experience of a single haemophilia treatment centre in the United States (US)
.
Haemophilia.
2011
;
17
(
4
):
597
-
604
.
61.
Rizza
CR
,
Spooner
RJ
.
Treatment of haemophilia and related disorders in Britain and Northern Ireland during 1976-80: report on behalf of the directors of haemophilia centres in the United Kingdom
.
Br Med J (Clin Res Ed).
1983
;
286
(
6369
):
929
-
933
.
62.
Rizza
CR
,
Spooner
RJ
,
Giangrande
PL
;
UK Haemophilia Centre Doctors’ Organization (UKCDO)
.
Treatment of haemophilia in the United Kingdom 1981-1996
.
Haemophilia.
2001
;
7
(
4
):
349
-
359
.
63.
Kim
KY
,
Yang
CH
,
Cho
MJ
,
Lee
M
.
Comprehensive clinical and statistical analysis of hemophilia in Korea
.
J Korean Med Sci.
1988
;
3
(
3
):
107
-
115
.
64.
Okolo
AI
,
Soucie
JM
,
Grosse
SD
, et al
.
Population-based surveillance of haemophilia and patient outcomes in Indiana using multiple data sources
.
Haemophilia.
2019
;
25
(
3
):
456
-
462
.
65.
Fukutake
K
,
Taki
M
,
Matsushita
T
, et al
.
Inhibitor development, safety and efficacy of Advate® among previously treated patients with hemophilia A in a postmarketing surveillance in Japan
.
Int J Hematol.
2019
;
109
(
3
):
336
-
345
.
66.
Haque
Q
,
Abuduaini
Y
,
Li
H
,
Wen
J
,
Wu
X
,
Feng
X
.
Intracranial hemorrhage in children with inherited bleeding disorders: a single center study in China
.
J Pediatr Hematol Oncol.
2019
;
41
(
3
):
207
-
209
.
67.
Carneiro
JDA
,
Blanchette
V
,
Ozelo
MC
, et al;
São Paulo-Toronto Hemophilia Study Group
.
Comparing the burden of illness of haemophilia between resource-constrained and unconstrained countries: the São Paulo-Toronto Hemophilia Study
.
Haemophilia.
2017
;
23
(
5
):
682
-
688
.
68.
Nelson
MD
Jr
,
Maeder
MA
,
Usner
D
, et al
.
Prevalence and incidence of intracranial haemorrhage in a population of children with haemophilia. The Hemophilia Growth and Development Study
.
Haemophilia.
1999
;
5
(
5
):
306
-
312
.
69.
Poonnoose
P
,
Carneiro
JDA
,
Cruickshank
AL
, et al;
MUSFIH Study group
.
Episodic replacement of clotting factor concentrates does not prevent bleeding or musculoskeletal damage - the MUSFIH study
.
Haemophilia.
2017
;
23
(
4
):
538
-
546
.
70.
Meunier
S
,
d’oiron
R
,
Chambost
H
,
Dolimier
E
,
Guillet
B
;
ORTHem 15-25 Study Group
.
Choice of factor VIII/IX regimen in adolescents and young adults with severe or moderately severe haemophilia. A French national observational study (ORTHem 15-25)
.
Thromb Res.
2017
;
151
:
17
-
22
.
71.
Öner
N
,
Gürsel
T
,
Kaya
Z
, et al
.
Inherited coagulation disorders in Turkish children: a retrospective, single-center cohort study
.
Transfus Apheresis Sci.
2020
;
59
(
3
):
102728
.
72.
MacLean
PE
,
Fijnvandraat
K
,
Beijlevelt
M
,
Peters
M
.
The impact of unaware carriership on the clinical presentation of haemophilia
.
Haemophilia.
2004
;
10
(
5
):
560
-
564
.
73.
Palomo Bravo
Á
,
Núñez
R
,
Gutiérrez Pimentel
MJ
,
Nieto
MD
,
Cos
C
,
Pérez
R
.
Haemophilia neonates: mode of delivery and perinatal complications
.
Haemophilia.
2016
;
22
(
3
):
e225
-
e228
.
74.
Yoffe
G
,
Buchanan
GR
.
Intracranial hemorrhage in newborn and young infants with hemophilia
.
J Pediatr.
1988
;
113
(
2
):
333
-
336
.

Supplemental data

Sign in via your Institution