Background:

Acute myeloid leukemia (AML) has very poor long-term survival with traditional therapies. AML has a diverse pathogenesis and likely represents multiple different diseases. Various epigenetic effector proteins are altered in AML by mutation, over-expression, or compartmental displacement and these changes maintain transcriptional programs important for leukemogenesis. The bromodomain and extra-terminal domain (BET) proteins, including BRD2, BRD3 and BRD4, play roles in many cellular functions important to leukemogenesis, such as super-enhancer function, transcriptional elongation, histone acetylation and cell cycle progression. In particular, AML cells depend on BRD4 for expression of the pro-survival proteins MYC and BCL2. BRD4 has therefore become an attractive target for novel therapeutics. PLX51107 is a novel BET inhibitor with a unique binding mode in the acetylated lysine binding pocket of BRD4 that differentiates it from other compounds under investigation. Our group has previously shown this compound to have antineoplastic activity in models of aggressive B cell malignancies. We have now investigated the anti-leukemic properties of PLX51107 in both in vitro and in vivo models of AML.

Results:

PLX51107 treatment potently reduced viability and proliferation of the human AML cell lines MV4-11, MOLM-13, OCI-AML3, and Kasumi-1, with IC50 of 0.17, 1.8, 0.2 and 0.2 μM, respectively. We then evaluated the in vitro activity of PLX51007 in primary human AML samples. PLX51107 inhibited the proliferation of primary human AML cells co-cultured with HS5 stromal cells. For nearly all samples tested (n=9), the IC50 of PLX51007 was less than 1 μM (average = 0.41 μM, range 0.039 - 1.5 μM). Notably, PLX51107 showed efficacy across a broad range of AML risk groups, including samples with adverse risk features such as 11q23 abnormalities and FLT3-ITD mutations. In comparison, for the same AML samples, the average IC50 for JQ1 was 0.71 μM (range 0.02 - 3.3 μM) and for cytarabine was 3.5 μM (range 0.33 to >10 μM). Furthermore, PLX51107 treatment reduced the clonogenicity of primary AML cells. Following incubation of AML cells in 1 μM PLX51107, there was significantly decreased colony formation (p<0.05) in drug-free, cytokine-supplemented methylcellulose media.

We next examined the efficacy of PLX51107 in vivo, utilizing luciferase labeled MV4-11 AML cells xenotransplanted into NOD / SCID / IL2rgnull (NSG) immunodeficient mice. Daily oral dosing with 20 mg/kg PLX51107 resulted in prolonged survival (median 47 days) compared to vehicle treated control animals (median 30 days, p< 0.001). Weekly measurement of bioluminescence showed decreased disease burden in PLX51107 treated mice. In addition, human peripheral blood CD45 / CD33 double positive cells were significantly decreased in treated animals. Histologic analysis conducted at day 16 showed decreased leukemic burden in the bone marrow of the PLX51107 treated animals. In addition, examination of tissues from moribund mice at time of euthanasia demonstrated fewer leukemia cells in the spleen, liver and bone marrow.

Conclusions:

Collectively, our results show pre-clinical activity of PLX51107 in AML, supporting further development of this compound in clinical trials for relapsed or refractory myeloid malignancies. We are currently working to define downstream targets of PLX51107 action and developing patient derived AML xenografts to further characterize the in vivo effects of PLX51107.

Disclosures

Walker:Gilead Sciences: Research Funding. Bhatnagar:Karyopharm: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution