Background: MLL/AF4-positive acute lymphoblastic leukemia (ALL) is associated with poor prognosis even after allogeneic hematopoietic stem cell transplantation. Previously, we reported that this ALL shows resistance to TNF-α, which is the factor involved in the graft versus leukemia (GVL) effect or tumor immunity, by upregulation of S100A6 expression followed by interference with the p53-caspase pathway. Amlexanox, an anti-allergic drug, was reported to inhibit the translocation pathway of endogenous S100A6 in endothelial cells.

Aims: This study was performed to examine the effects of Amlexanox on MLL/AF4-positive ALL.

Methods: In vitro analysis, cell growth of MLL/AF4-positive ALL cell lines ( SEM and RS4;11) were analyzed with TNF-α (10 ng/mL) and Amlexanox (0, 10, and 100 µg/mL).The effect of Amlexanox on S100A6 and p53-caspase pathways were examined by Western blotting (WB) analysis. In vivo analysis MLL/AF4-positive transgenic mice model, which show CD45R/B220+leukemia by 12 months of age we established and human peripheral blood mononuclear cell (Hu-PBMC) NOD/SCID mice transplanted with SEM-Luc were examined to compare mice fed diet containing Amlexanox (0.02%) with mice fed control diet.

Results: There were no significant differences between the growth of SEM or RS4;11 cells in the absence or presence of 10 µg/mL of Amlexanox in vitro under 10 ng/mL of TNF-α. However, both cells showed significant growth inhibition by 10 ng/mL of TNF-α in the presence of 100 µg/mL of Amlexanox (P = 0.0085 for SEM, P = 0.0196 for RS4;11) WB analysis showed that S100A6 was activated in the presence of 10 ng/mL TNF-α, and activated S100A6 was decreased and both acetyl-p53/p53 ratio and cleaved caspase 3/caspase 3 ratio were increased in cells treated with 100 µg/mL of Amlexanox under 10 ng/mL of TNF-α in the MLL/AF4-positive human ALL cell lines. In vivo, MLL/AF4-positive transgenic mice fed a diet containing Amlexanox (0.02%) developed significantly less volume of CD45R/B220+ leukemia at the age of 1 year in comparison with mice fed control diet (P<0.001 for BM and .P<0.001 for spleen). Hu-PBMC NOD/SCID mice transplanted with SEM-Luc in the Amlexanox group showed significantly longer survival than those in the control group (P < 0.014).

Conclusions: Amlexanox may be a breakthrough drug for MLL/AF4-positive ALL because it inhibits the resistance of MLL/AF4-positive ALL to TNF-α by downregulating S100A6 expression followed by upregulating the p53-caspase pathway.Specifically, allogeneic hematopoietic stem cell transplantation is expected to show beneficial effects in combination with Amlexanox.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution