Impressive advances in defining the properties of receptors for the Fc portion of immunoglobulins (FcR) have been made over the past several years. Ligand specificities were systematically analyzed for both human and mouse FcRs that revealed novel receptors for specific IgG subclasses. Expression patterns were redefined using novel specific anti-FcR mAbs that revealed major differences between human and mouse systems. The in vivo roles of IgG receptors have been addressed using specific FcR knockout mice or in mice expressing a single FcR, and have demonstrated a predominant contribution of mouse activating IgG receptors FcγRIII and FcγRIV to models of autoimmunity (eg, arthritis) and allergy (eg, anaphylaxis). Novel blocking mAbs specific for these activating IgG receptors have enabled, for the first time, the investigation of their roles in vivo in wild-type mice. In parallel, the in vivo properties of human FcRs have been reported using transgenic mice and models of inflammatory and allergic reactions, in particular those of human activating IgG receptor FcγRIIA (CD32A). Importantly, these studies led to the identification of specific cell populations responsible for the induction of various inflammatory diseases and have revealed, in particular, the unexpected contribution of neutrophils and monocytes to the induction of anaphylactic shock.

Human FcγRs

The human IgG receptor family consists of several activating receptors (hFcγRI, hFcγRIIA, hFcγRIIC, and hFcγRIIIA), 1 inhibitory receptor (hFcγRIIB), 1 receptor with unclear functions (hFcγRIIIB),1,2  and 1 receptor (hFcRn) involved in recycling and transport of IgG among other functions3,4  (Figure 1). Activating hFcγRI and hFcγRIIIA requires the association of the FcRγ subunit (Fcer1g) to be expressed and functional at the cell surface. FcRγ indeed contains an immunoreceptor tyrosine-based activation motif (ITAM) that, after aggregation of these latter receptors at the cell membrane, is required for cell activation. hFcγRIIA and hFcγRIIC possess their own ITAM in their intracellular domain and do not associate with the FcRγ subunit.5  hFcγRIIB possesses an immunoreceptor tyrosine-based inhibition motif (ITIM) in its intracellular domain and negatively regulates cell activation and degranulation, cell proliferation, endocytosis, and phagocytosis when coaggregated to an activating FcR.6,7  hFcγRIIB and hFcγRIIC share the same extracellular domain, but hFcγRIIC is expressed by only 20% of persons (FcgR2C-ORF) because of an allelic polymorphism introducing a stop codon in its third exon (FcgR2C-Stop).8,9  In 2007, the characterization of the 2 first human FcγRIIB/C-specific mAbs (clone GB310  and clone 2B611 ) allowed reexamination of the expression patterns of hFcγRIIB, particularly in FcgR2C-Stop persons.

Figure 1

Human IgG receptors. Schematic representation of human IgG receptors at the cell membrane (gray bar) and their association or not to the FcRγ-chain dimer (black). Green boxes represent ITAMs; and the white box, the ITIM. Binding of a human IgG subclass is indicated in bold (high affinity), plain (low affinity), or between parentheses (very low affinity). - indicates no binding.

Figure 1

Human IgG receptors. Schematic representation of human IgG receptors at the cell membrane (gray bar) and their association or not to the FcRγ-chain dimer (black). Green boxes represent ITAMs; and the white box, the ITIM. Binding of a human IgG subclass is indicated in bold (high affinity), plain (low affinity), or between parentheses (very low affinity). - indicates no binding.

Close modal

Published data using human FcR-specific mAbs can be summarized by the following features: hFcγRI (CD64) is restricted to monocytes/macrophages and dendritic cells (DCs) and, inducibly, expressed on neutrophils12  and mast cells13 ; hFcγRIIA (CD32A) is expressed on all myeloid cells but not on lymphocytes; hFcγRIIB (CD32B) is highly expressed only on circulating B cells11  and basophils (L. Cassard, F. Jönsson, S. Arnaud, P.B., M. Daëron, manuscript submitted, October 2011), poorly expressed on 20% of the monocytes and 4% of the neutrophils,10,11  and expressed on tissue macrophages and DCs,11  but not on mast cells14 ; hFcγRIIC (CD32C) is expressed on NK cells,8  monocytes, and neutrophils9 ; hFcγRIIIA (CD16A) is expressed on NK cells and monocytes/macrophages; hFcγRIIIB (CD16B) is expressed on neutrophils and, as recently demonstrated, on subsets of basophils.15  These expression patterns highlight that hFcγRIIA is the only activating IgG receptor constitutively expressed by mast cells, basophils, neutrophils and eosinophils. Importantly, human activating IgG receptors may be negatively regulated by hFcγRIIB only on B cells and basophils, but not on mast cells, NK cells, and on most neutrophils and monocytes that do not express this inhibitory receptor. Recently, nevertheless, a novel polymorphism affecting the locus encoding human FcRs has been reported that leads to hFcγRIIB expression on NK cells and has been shown to negatively regulate IgG-induced NK cell activation.9  Finally, hFcRn is expressed on antigen-presenting cells, monocytes/macrophages,16  neutrophils,4  vascular endothelial cells, intestinal epithelial cells, and, importantly, on syncytiotrophoblasts, which allow transfer of IgG from mother to fetus antenatally17  (Table 1). hFcRn was reported not only to transport and recycle IgG but also to transport IgG-bound antigens favoring antigen presentation and subsequent immune responses,3  and to enable phagocytosis of IgG-opsonized bacteria by neutrophils.4 

Table 1

Human IgG receptor expression pattern

FcγRIFcγRIIAFcγRIIBFcγRIIC*FcγRIIIAFcγRIIIBFcRn
B cells − − − − − − 
T cells − − − − − − − 
NK cells − −  − − 
Monocytes/macrophages +/− − 
Neutrophils (+) +/− − 
DCs − − − 
Basophils − − − +/− − 
Mast cells (+) − − − − NA 
Eosinophils − − − − − − 
Endothelium − − − − − − 
Intestinal epithelium − − − − − − − 
Syncytiotrophoblasts − − − − − − 
FcγRIFcγRIIAFcγRIIBFcγRIIC*FcγRIIIAFcγRIIIBFcRn
B cells − − − − − − 
T cells − − − − − − − 
NK cells − −  − − 
Monocytes/macrophages +/− − 
Neutrophils (+) +/− − 
DCs − − − 
Basophils − − − +/− − 
Mast cells (+) − − − − NA 
Eosinophils − − − − − − 
Endothelium − − − − − − 
Intestinal epithelium − − − − − − − 
Syncytiotrophoblasts − − − − − − 

+ indicates expression; (+), inducible expression; +/−, very low percentages or rare subsets express the receptor; −, no expression; and NA, not analyzed.

*

In Fcgr2c-ORF persons.9 

Detectable and functional expression in nonconventional Fcgr2c-Stop persons.9 

We have recently reanalyzed the ligand specificity of hFcγRs using both Surface Plasmon Resonance on soluble hFcγRs (Table 2) and flow cytometry on a collection of transfectants expressing similar levels of hFcγRs.18  Polymorphic variants were included in this analysis when the mutation was in the extracellular domain of the receptors: hFcγRIIA variants H131 and R131; hFcγRIIIA variants F158 and V158; hFcγRIIIB variants NA1 (R36 N65 D82 V106), NA2 (S36 S65 N82 I106), and SH (S36 S65 D78 N82 I106). We found that IgG1 and IgG3 bound to all hFcγRs, IgG2 bound not only to hFcγRIIA but also to hFcγRIIIA(V158), and, unexpectedly, IgG4 had several receptors: hFcγRI, hFcγRIIA, hFcγRIIB, hFcγRIIC, and hFcγRIIIA(V158) (Table 2). Polymorphisms within the extracellular domain affected binding properties for only IgG1 and IgG2, and hFcγRIIA and hFcγRIIIA, but not hFcγRIIIB.18  The identification of receptors for IgG4 is of importance. IgG4 was, indeed, considered a “neutral” IgG isotype because it does not bind complement and was thought not to bind hFcγRs.19  Indeed, IgG4-based therapeutic antibodies have been designed based on this assumption, for example, natalizumab (anti–VLA-4), gemtuzumab (anti-CD33),20  and TGN1412 (anti-CD28); the 2 latter drugs have now been withdrawn from the market. Notably, hFcγRI was found to be a high-affinity receptor for IgG4.18  The capacity of hFcγRI to bind IgG1, IgG2, and IgG4 with high affinity was proposed to rely on the third extracellular domain (unique to FcγRI).12  However, recent crystallographic data suggest that this capacity is the result of a shorter loop between the F and G β-sheets (FG-loop) in the second extracellular domain of hFcγRI, compared with low-affinity hFcγRs.21  Of note, the high-affinity IgG receptor hFcRn22  is quite dissimilar from hFcγRI in that hFcRn binds IgG through the CH2-CH3 hinge region of IgG1, IgG2, IgG3, and IgG423  only at acidic pH (pH 6-6.5), hFcRn is structurally related to MHC class I molecules and hFcRn expression requires association to β2-microglobulin.17 

Table 2

Affinity constants of human IgG receptors for human IgG subclasses (× 105M−1)18 

FcγRIFcγRIIA
FcγRIIBFcγRIICFcγRIIIA
FcγRIIIB
FcRn
H131R131V158F158NA1,NA2,SH
IgG1 650* 52 35 1.2 1.2 20 11.7 2.0 80* 
IgG2 — 4.5 1.0 0.2 0.2 0.7 0.3 — NA 
IgG3 610* 8.9 9.1 1.7 1.7 98* 77 10 NA 
IgG4 340* 1.7 2.1 2.0 2.0 2.5 2.0 — NA 
FcγRIFcγRIIA
FcγRIIBFcγRIICFcγRIIIA
FcγRIIIB
FcRn
H131R131V158F158NA1,NA2,SH
IgG1 650* 52 35 1.2 1.2 20 11.7 2.0 80* 
IgG2 — 4.5 1.0 0.2 0.2 0.7 0.3 — NA 
IgG3 610* 8.9 9.1 1.7 1.7 98* 77 10 NA 
IgG4 340* 1.7 2.1 2.0 2.0 2.5 2.0 — NA 

— indicates no binding; and NA, not analyzed.

*

High-affinity binding.

Mouse FcγRs

In 2005, the characterization of a novel activating mouse IgG receptor, FcγRIV, was reported24  that subsequently led to a profound reanalysis of mouse FcR ligands and expression patterns. FcγRIV exists in rodents (mouse, rat, hamster)25  and in some nonhuman primates (macaque, gibbon, orangutan) but not in others (gorilla, chimpanzee), and importantly not in humans (J. Lejeune, B. Piégu, P. Gaudray, M. Ohresser, H. Watier, manuscript submitted, April 2012). FcγRIV, like the 2 other mouse activating IgG receptors, FcγRI and FcγRIII, requires the association of the FcRγ subunit to be expressed and functional at the cell surface.5  FcγRIV is a high-affinity receptor for mouse IgG2a and IgG2b, as it binds monomers of both IgG subclasses.26  FcγRIV has, however, no affinity for mouse IgG1 or IgG3. FcγRIV has therefore a distinct IgG subclass specificity than other mouse FcγRs: FcγRI is a high-affinity receptor for mouse IgG2a only and a low-affinity receptor for mouse IgG2b26  and IgG327 ; FcγRIII and FcγRIIB, the only inhibitory IgG receptor, are low-affinity receptors for mouse IgG1, IgG2a, and IgG2b1  (Figure 2). It follows that all activating mouse FcγRs (FcγRI, FcγRIII, and FcγRIV) bind to IgG2a and IgG2b, whereas FcγRIII is the only activating FcγR binding IgG1 and FcγRI the only activating FcγR binding IgG3. Surprisingly, mouse FcγRIIB, FcγRIII, and FcγRIV, but not FcγRI, were also described to be low-affinity receptors for IgE.26,28  FcγRIIB, FcγRIII, and FcγRIV are therefore IgG and IgE receptors, and FcγRI is a “strict” IgG receptor. Polymorphic variants of mouse IgG receptors have been described for FcγRIIB, haplotypes Ly17.1 (129, NFS, SWR) and Ly17.2 (C57BL/6, BALB/c, DBA/1),29  and for FcγRIII haplotypes T (C57BL/6 and 10), V (SWR), and H (BALB/c, DBA/1, NZB, NZW, NOD, BXSB, MRL/lpr, CBA),30  but no effect on IgG or IgE binding has been reported. Finally, FcRn, the neonatal IgG receptor, is a high-affinity receptor for all IgG subclasses at pH less than 6.5 (Figure 2). FcRn does not directly induce or regulate cell activation but enables IgG protection and recycling,31  transport of IgG, phagocytosis of IgG-opsonized bacteria by neutrophils,4  and protection against bacterial infections,32  as reviewed recently.17 

Figure 2

Mouse IgG receptors. Schematic representation of mouse IgG receptors at the cell membrane (gray bar) and their association or not to the FcRγ-chain dimer (black). Green boxes represent ITAMs; and the white box, the ITIM. Binding of a mouse IgG subclass is indicated in bold (high affinity), plain (low affinity), or between parentheses (very low affinity). - indicates no binding.

Figure 2

Mouse IgG receptors. Schematic representation of mouse IgG receptors at the cell membrane (gray bar) and their association or not to the FcRγ-chain dimer (black). Green boxes represent ITAMs; and the white box, the ITIM. Binding of a mouse IgG subclass is indicated in bold (high affinity), plain (low affinity), or between parentheses (very low affinity). - indicates no binding.

Close modal

Novel specific mAbs generated against mouse FcγRs have facilitated the examination of the expression pattern of FcγRIII and of the newly cloned FcγRIV. Reports in wild-type (WT) mice have described FcγRI to be restricted to monocyte-derived DCs,33,34  FcγRIV to be restricted to Ly6Clo monocytes,35  macrophages, and neutrophils,26  whereas FcγRIIB and FcγRIII were shown to be expressed on all myeloid populations12 ; FcγRIIB is also expressed on B cells and FcγRIII also on NK and NKT cells.36  FcRn is expressed on antigen-presenting cells on neutrophils,4  on splenic monocytes and B cells,37  on the vascular endothelium, and, during the neonatal period, on epithelial cells of the intestine17  (Table 3). Among the newly described FcR-specific mAbs, blocking mAbs were characterized for FcγRIII (clone 275003)38  and FcγRIV (clone 9E9).24  FcγRIIB-specific blocking mAbs (clone K75.325 anti-Ly17.1 haplotype or clone K9.361 anti-Ly17.2 haplotype) were described in the 1980s.29  However, a FcγRI-specific blocking mAb has still not been reported.

Table 3

Mouse IgG receptor expression pattern

FcγRIFcγRIIBFcγRIIIFcγRIVFcRn
B cells − − − + 
T cells − − − − − 
NK cells − − − − 
Monocytes/macrophages − 
Neutrophils − 
DCs +* − 
Basophils − − − 
Mast cells − − 
Eosinophils − − − 
Endothelium − − − − 
Intestinal epithelium − − − − 
FcγRIFcγRIIBFcγRIIIFcγRIVFcRn
B cells − − − + 
T cells − − − − − 
NK cells − − − − 
Monocytes/macrophages − 
Neutrophils − 
DCs +* − 
Basophils − − − 
Mast cells − − 
Eosinophils − − − 
Endothelium − − − − 
Intestinal epithelium − − − − 
*

Monocyte-derived DCs, but not conventional DCs.34 

On splenic B cells only.37 

Human versus mouse FcγRs

Most human FcγRs bear the same name and CD as mouse FcγRs. They are, however, quite dissimilar in binding abilities and expression pattern. Recent analyses revealed 3 major differences between human and mouse FcγRs binding abilities: (1) all human activating FcγRs bind the major human IgG subclass IgG1,18  whereas only mouse activating FcγR FcγRIII binds mouse IgG126 ; (2) human inhibitory hFcγRIIB has a lower affinity for IgG1, IgG2, and IgG3 than all other hFcγRs,18  which is not the case in mice for IgG1 and IgG2b24 ; and (3) no human FcγR binds human IgE,18  whereas 3 of the 4 mouse FcγRs (FcγRIIB, FcγRIII, FcγRIV) bind mouse IgE.26,28  Interestingly, mouse FcγRs and FcRn efficiently bind human IgG subclasses, whereas human FcγRs and FcRn do not or poorly bind mouse IgG subclasses. For example, human FcγRI binds mouse IgG2a and IgG2b, but not mouse IgG1 (D. A. Mancardi, M. F. Albanesi, F. Jönsson, B. Iannascoli, N. V. Rooijen, X. Kang, M. Daëron, P.B., manuscript in preparation), human FcγRIIA binds mouse IgG1, 2a, and 2b, but not mouse IgG3, and human FcγRIIIB does not bind mouse IgG.38  Notably, human FcRn has no affinity for mouse IgG1, but its low affinity for mouse IgG2a and IgG2b39  is sufficient to restore a mouse IgG2-dependent autoimmune arthritis in a transgenic mouse model (mice deficient for FcRn and transgenic for hFcRn).40,41  Major differences between human FcγR expression patterns and that of their mouse homolog also exist: (1) the expression of mouse, but not human, FcγRI is restricted to monocyte-derived DCs; (2) the expression of human, but not mouse, FcγRIIB is mainly restricted to B cells and basophils; (3) the expression of human FcγRIIIA, but not mouse FcγRIII, is restricted to NK cells and monocytes/macrophages; (4) FcγRIV exist in mice but not in humans24,25 ; and (5) FcγRIIA, FcγRIIC, and FcγRIIIB exist in humans but not in mice.12  FcγR homologs between humans and mice may thus be defined based on expression and ligand binding, rather than on amino acid similarity. Illustrating this concept, when binding IgG, mouse FcγRIV was proposed to be a “functional” homolog of human IgG receptors hFcγRIIIA24,42  or hFcγRI (D. A. Mancardi, M. F. Albanesi, F. Jönsson, B. Iannascoli, N. V. Rooijen, X. Kang, M. Daëron, P.B., manuscript in preparation). Furthermore, when binding IgE, mouse FcγRIV was proposed to be a “functional” homolog of human IgE receptor FcϵRI.26 

Several IgG-mediated mouse models of inflammatory disease have been recently used to address the properties of FcγRs in vivo. The identification of mouse FcγRIV as a novel activating IgG receptor24  led, indeed, to readdress the contributions of mouse activating IgG receptors FcγRI and FcγRIII. Data are summarized in the next 2 sections from models of inflammatory diseases that highlight the contribution of this novel IgG receptor in inflammatory reactions.

Data using FcγR-deficient mice

Mice deficient for the FcRγ subunit (FcRγ−/− mice) that is required for all activating FcγRs to be expressed and functional were reported as early as 1994.43  These mice lack expression of FcγRI, FcγRIII, and FcγRIV (and FcϵRI)1  but present also multiple non-FcR–related abnormalities. The FcRγ-chain is, indeed, also required for the expression of macrophage-inducible C-type lectin (Mincle)44  and osteoclast-associated receptor (OSCAR),45  and contributes to the signal transduction of several other molecules. FcγRIIB−/− mice were reported in 1996,46  FcγRIII−/− mice in 199647  and 1999,48  FcγRI−/− mice in 2002,49,50  FcRn−/− in 2003,51  and, finally, FcγRIV−/− mice in 2010.52  Notably, FcγRIIB−/− (P.B., unpublished data, August 2003) and FcγRIII−/−,38,52,53  but not FcγRI−/− mice, exhibit increased expression of FcγRIV compared with WT mice. No significant variation in the expression of other FcγRs has been reported in these mice. Studies using FcγRI−/− mice have reported FcγRI to contribute to IgG2a-induced models of type I and II hypersensitivity (passive systemic anaphylaxis [PSA]) and experimental autoimmune hemolytic anemia, respectively), to collagen-induced arthritis50  and to reversed passive Arthus reaction.49  Studies using FcγRIIB−/− mice have reported that FcγRIIB negatively regulates inflammatory and hypersensitivity reactions in several autoimmune, allergic, and inflammatory models, as exhaustively reviewed recently.7  Studies using FcγRIII−/− mice have reported that FcγRIII triggers Arthus reaction and passive cutaneous anaphylaxis (PCA),47  IgG1-induced PSA,38,54  K/BxN arthritis,55,56  and collagen-induced arthritis.57  A study using FcγRIV−/− mice reported that FcγRIV triggers experimental nephrotoxic nephritis.52  Finally, studies using FcRn−/− mice reported that: (1) FcRn binds and prolongs the life span of IgG and albumin51 ; (2) FcRn is essential for the induction of K/BxN arthritis58 ; and (3) FcRn is required for efficient phagocytosis of IgG-opsonized bacteria by FcγRs.4  This latter unexpected property of FcRn may explain why cells that do not express FcRn (eg, NK cells) are incapable of phagocytosis after engagement of activating FcγRs.

Although inhibitory FcγRIIB was considered to be the main FcγR involved in the anti-inflammatory effects of intravenous immunoglobulin,56,59,60  FcRn58  and FcγRIII61-64  have also been reported to be involved/mandatory. Indeed, an increasing number of reports have revealed that activating FcγRIII mediates the anti-inflammatory effects of intravenous immunoglobulin in experimental thrombocytopenia when expressed on DCs61  or on macrophages,62  in allergic airway inflammation when expressed on NKT cells,63  and in a nonimmune inflammation model of obstructive nephropathy.64 

Using knockout mice for a particular FcR was for a long time considered the standard approach to address the function of a particular FcγR in vivo (ie, by studying the effect of its absence). Recently, however, the generation of multiple FcR-knockout mice has enabled the study of a particular FcR in the absence of most/all other FcRs. FcγRI/IIB/III-triple knockout (3KO) mice, lacking 3 of the 4 mouse FcγRs, were indeed described to retain the ability to develop collagen-induced arthritis after immunization with bovine collagen type II in Freund adjuvant.65  Because these mice express only FcγRIV as an activating IgG receptor, it was deduced that FcγRIV contributes to collagen-induced arthritis. These mice, nevertheless, express the high-affinity IgE receptor FcϵRI that may also contribute to collagen-induced arthritis, as immunizations in Freund adjuvant leads to antigen-specific IgG but also IgE production.38  FcγRI/IIB/IIIA FcϵRI/II-quintuple knockout mice, which do not express FcγRs or FcϵRs other than FcγRIV (5KO, also known as “FcγRIV-only”), were subsequently generated and have circumvented this potential issue. Using “FcγRIV-only” mice we reported that FcγRIV induced arthritic inflammation in the passive K/BxN model of arthritis66  in the presence of IgG2-immune complexes.41  These results are in agreement with those obtained when inducing collagen-induced arthritis in 3KO mice.65  “FcγRIV-only” mice also developed lung inflammation after activation of alveolar macrophages in the presence of IgE-immune complexes,26  and experimental thrombocytopenia induced by antiplatelet mouse IgG2a mAbs.38  Furthermore, using FcγRI/IIB/III FcϵRI/II FcRn-sextuple knockout (6KO) mice, we have reported that FcγRIV-dependent induction of K/BxN arthritis requires FcRn, probably to transport pathogenic IgG2 antibodies to the joints and to protect these antibodies from degradation.41 

These analyses using “FcγRIV-only” mice, have not yet been performed using “FcγRI-only” or “FcγRIII-only” mice to evaluate their contribution to the induction of inflammatory models. “FcγRIII-only” mice may not be particularly worthy to generate because FcγRIII is the only activating IgG receptor that binds IgG1. Disease models that rely on pathogenic antibodies of the IgG1 subclass depend therefore on FcγRIII. “FcγRI-only” mice may be worth generating because FcγRI, like FcγRIV, binds mouse IgG2a and IgG2b.24,26  FcγRI and FcγRIV may play redundant roles that may explain why studies using FcγRI−/− mice have not reported a contribution of FcγRI to K/BxN arthritis56  or to experimental thrombocytopenia after injections of IgG2b antiplatelet antibodies for example.24  “FcγRI-only” mice may, however, reveal the contribution of FcγRI to these and/or other models that may be undetectable when FcγRIV is coexpressed with FcγRI. Of note, FcγRI is reported to be expressed in unchallenged mice only on DCs33  and, among DC subsets, specifically on monocyte-derived DC subsets, as recently shown in the muscle tissue and its draining lymph nodes.34 

Data using anti–mouse FcγR blocking mAbs

Using specific blocking mAbs has proven efficient to analyze the properties of a particular FcR in vivo in WT mice without necessitating simple or multiple FcγR knockouts. Specific in vivo blocking abilities of mAbs were, indeed, described for FcγRIIB in 2001,29,59  for FcγRIII in 2011,38,41  and for FcγRIV in 2005.24  Unfortunately, no blocking mAb exists for FcγRI. WT mice treated with anti-FcγRIII mAbs have shown that FcγRIII contributes to K/BxN arthritis,41  to active systemic anaphylaxis (ASA), and is mandatory for IgG1-induced PSA.38  WT mice treated with anti-FcγRIV mAbs have revealed that FcγRIV contributes to experimental thrombocytopenia,24  K/BxN arthritis,41  and ASA and is mandatory for IgG2b-induced PSA.38  WT mice treated with a combination of anti-FcγRIII and anti-FcγRIV mAbs have revealed that these receptors are, together, responsible for K/BxN arthritis41  and for ASA.38  That these receptors are responsible for the induction of K/BxN arthritis is in agreement with previous reports using knockout mice.52,55,56  However, that these receptors are responsible for the induction of ASA is unexpected. Altogether, these results in WT mice validate and extend the results obtained using single or multiple FcR-deficient mice. Therefore, using specific blocking anti-FcR mAbs in WT mice will certainly become the method of choice to study FcR properties in vivo.

Data using FcR-humanized mice

Studying human FcRs in vivo constitutes a major challenge that many have attempted by generating human FcR-transgenic mice. Human FcγRItg mice were reported in 1996,67  hFcγRIIAtg mice in 1999,68  hFcγRIIBtg in 2011,69  hFcγRIIIAtg and hFcγRIIIBtg mice in 1996,70  and hFcRntg in 2003.51  hFcγRIICtg mice have not yet been generated. hFcγRIIAtg and hFcγRIIIBtg mice closely recapitulated their respective expression patterns in humans. Unfortunately, hFcγRI is constitutively expressed on neutrophils in hFcγRItg mice, whereas an inducible expression is reported on human neutrophils.71  hFcγRIIIA and hFcγRIIIB have recently been reported to be both expressed on spleen and circulating DCs, and hFcγRIIIA on eosinophils from hFcγRIIIAtg hFcγRIIIBtg mice72  but are not expressed on these cell populations in humans. hFcγRIIBtg mice have high hFcγRIIB expression on more than 90% mouse monocytes and granulocytes compared with the poor expression on minor fractions of these cell types reported in humans.11  Crossing these transgenic mice together resulted in a mouse model expressing multiple hFcγRs (ie, hFcγRI/IIA/IIB/IIIA/IIIB, except hFcγRIIC and hFcRn) that conserved the original expression patterns of these human transgenes and, unfortunately, also their abnormal expression on several cell populations.72  The in vivo properties of these human FcγRs can, nevertheless, be studied in these transgenic mice, but conclusions on their contribution to disease and therapy models are thus to be drawn carefully to remain meaningful. Another difficulty to analyze the contribution of these receptors to disease and therapy models in FcR-humanized mice comes from the cross-binding of human and mouse IgG to human and mouse FcRs (detailed in “Advances in FcγR ligand specificities and expression”). This cross-binding can potentially lead to a competition in vivo for IgG binding between the transgenic human FcγR and the endogenous mouse FcγR. This phenomenon may also induce the aggregation of receptors originating from different species, which result in artifactual situations. The expression of a supplementary IgG receptor in WT mice, as it is the case when a transgene encodes for a human FcγR, may also lead to adverse reactions. Studies using mice transgenic for hFcγRIIA on a WT background, indeed, reported spontaneous autoimmune diseases (ie, pneumonitis, glomerulonephritis, and rheumatoid arthritis).73  The expression of hFcγRI on a WT mouse background, however, was reported to not lead to adverse reactions. Why a human FcγRIIA encoding transgene, but not a human FcγRI encoding transgene is pathogenic when expressed in vivo in WT mice remains unanswered but may relate to their different expression pattern (Table 1) and/or cross-binding of mouse IgG (detailed in “Advances in FcγR ligand specificities and expression”). hFcγRItg mice have revealed that hFcγRI enables antigen targeting to DCs for enhanced protective immunity67  and IgG-dependent protection against malaria infection.74  In most cases, however, the analysis of the properties of human FcRs in vivo in inflammatory models of disease requires that the transgenes encoding human FcRs are expressed in mice deficient for endogenous FcRs to avoid competition for ligands or artifacts.

For example, hFcγRIIA, which does not require the FcRγ subunit to be expressed and functional (Figure 1), was expressed in FcRγ−/− mice that lack expression of endogenous activating FcγRs (FcγRI, FcγRIII, and FcγRIV). These hFcγRIIAtg FcRγ−/− mice have revealed that hFcγRIIA expression was sufficient to restore IgG-dependent experimental autoimmune thrombocytopenia,68  rheumatoid arthritis,75  and allergic reactions and lung inflammation76  in resistant mice (detailed in “Role of FcγR+ cells in Ab-induced pathologies [eg, arthritis and anaphylaxis]”). The same strategy may be used for the analysis of hFcγRIIB, hFcγRIIC, or hFcγRIIIB that do not require the FcRγ subunit, but not for the analysis of hFcγRI and hFcγRIIIA that require the FcRγ subunit to be expressed and functional. As an alternative to the FcRγ−/− background, we have recently used the multiple FcR-deficient mice we generated (5KO also known as FcγRI/IIB/III FcϵRI/II-deficient mice)26  to express and analyze in vivo hFcγRIIA76  or hFcγRI (D. A. Mancardi, M. F. Albanesi, F. Jönsson, B. Iannascoli, N. V. Rooijen, X. Kang, M. Daëron, P.B., manuscript in preparation) in disease and therapy models. Of note, these mice still express endogenous FcγRIV that may be blocked in vivo using specific blocking mAbs. The recent generation of mice deficient for all endogenous mouse FcγRs and expressing multiple hFcγRs (hFcγRI/IIA/IIB/IIIA/IIIB)72  allowed to study their properties without the interference of endogenous FcγRs or usage of blocking mAbs. These mice confirmed, indeed, the activities reported previously in mice expressing a single hFcγR transgene in models of thrombocytopenia, B-cell depletion, and PSA.68,69,76  Finally, hFcRn was expressed in FcRn−/− mice and revealed that hFcRn prolongs the life span of human IgG40  and albumin,51  enables capture and processing of luminal IgG-bound antigens favoring the adaptive immune response,3  and restores K/BxN arthritis in resistant FcRn−/− mice.41  Most of these analyses were, however, performed in mice expressing only one human IgG receptor and do not recapitulate the complexity of their interactions in the human system. A mouse model expressing the full array of hFcγRs and hFcRn, and lacking all endogenous FcRs, may thus prove an invaluable tool to study human IgG receptor biology, provided that the expression pattern of the human FcRs in transgenic mice reproduces their expression pattern in humans.

Many attempts have recently been made to determine the cell population(s) responsible for the in vivo properties of a specific FcR in a specific disease model. In this aim, mice deficient for a given cell population are compared with WT mice, or cell-specific depletion is achieved using depleting mAbs or compounds. To illustrate how the recent description of the expression patterns of mouse and human FcγRs, coupled with FcγR-blocking antibodies, cell-depletion experiments, and multiple FcγR-deficient mice, have helped to define the role of FcR-expressing cell populations in disease models, the following 2 sections describe reports on arthritis and anaphylaxis models that have, unexpectedly, demonstrated a major contribution of neutrophils to disease induction.

Arthritis

These approaches described herein were used to analyze the requirement for specific cell subsets in the development of the K/BxN passive arthritis model, which relies on the injection of autoantibody-containing sera from KRNtg C57BL/6 × NOD F1 mice.77  This model was reported to be abrogated in WT mice depleted of monocytes/macrophages78  or depleted of neutrophils.79  This latter result was confirmed by the resistance of Gfi-1−/− mice, which lack mature neutrophils, to develop K/BxN arthritis.80  Further supporting the essential role of neutrophils in K/BxN arthritis, deletion of Syk specifically in neutrophils has been reported to block disease development.81  The contribution of mast cells in this arthritis model, which had originally been suggested by the resistance of mast cell-deficient W/Wv mice82  to develop pathology, has since come under question by our work41  and others81,83,84  using mast cell-deficient Wsh/Wsh mice or Cre-mediated mast cell ablation. Resistance of W/Wv mice to arthritis may indeed rely on the neutropenic state of these mice rather than on their mast cell deficiency, as suggested from another arthritis model.85  The finding that K/BxN arthritis requires monocytes/macrophages and neutrophils, but does not require mast cells, is in agreement with results obtained using multiple FcγR-deficient mice, such as the 3KO (FcγRI/IIB/III-deficient) mice65  or 5KO (FcγRI/IIB/III FcϵRI/II-deficient, also known as “FcγRIV-only”) mice that develop K/BxN arthritis. Indeed, in these mice, K/BxN arthritis was dependent on FcγRIV,41  and FcγRIV is expressed only on monocytes, macrophages and neutrophils.26  Similar results have been reported in a model of collagen-induced arthritis,65  supporting the conclusion that mast cells are not mandatory but may contribute to arthritis in these mouse models. Furthermore, results obtained using human FcR-transgenic mice support these results, as mast cell-deficient hFcγRIIAtg mice (F. Jönsson, unpublished data, September 2011) and hFcγRItg mice (D. A. Mancardi, M. F. Albanesi, F. Jönsson, B. Iannascoli, N. V. Roeijen, X. Kang, M. Daëron, P.B., manuscript in preparation) develop K/BxN arthritis. In these latter mice, K/BxN arthritis was dependent on hFcγRI, and the expression of hFcγRI on effector cells was restricted to monocytes/macrophages and neutrophils. Of note, the deficiency in FcRn was reported to protect mice from experimental arthritis,58  and expressing human FcRn restored K/BxN arthritis in FcRn-deficient mice.41  The FcRn-expressing cell subset that is responsible for disease induction has unfortunately not been identified yet, but the recent generation of conditional FcRn-deficient mice37  might enable investigators to address this question.

Anaphylaxis

Anaphylaxis is a hyperacute allergic reaction that can have fatal consequences. The current paradigm states that anaphylaxis is an immediate hypersensitivity reaction to an allergen/antigen mediated by IgE, resulting in the release of granular mediators by mast cells and basophils in patients sensitized to a particular allergen/antigen. The FcRs and/or cell subsets that were identified to be responsible for anaphylaxis induction are, however, different depending on the experimental protocol used.

IgE-induced PSA.

IgE-induced PSA is elicited by injecting WT mice systemically with IgE antibodies 24 to 48 hours before an intravenous challenge with specific antigen. IgE-induced PSA was abrogated in mice deficient for FcϵRI, the high-affinity IgE receptor expressed by mast cells and basophils.86  Notably, it was abrogated in mast cell-deficient W/Wv mice54  but not in basophil-depleted mice.87  It was also abrogated in histidine decarboxylase-deficient mice, which lack histamine,88  and in mice injected with histamine receptor antagonists.89  These findings demonstrate the mandatory role of mast cells, FcϵRI, and histamine in IgE-induced PSA (Figure 3).

Figure 3

Contribution of each pathway in the respective anaphylaxis model. A pathway is represented by a cell type, the antibody class, and the mediator released. Contribution (Yes, green box) or no contribution (No, red box) to a particular anaphylaxis model is indicated. Contradictory results are indicated (white box). If identified, responsible FcRs are indicated between parentheses. N.A. indicates not analyzed. Corresponding references are provided. Adapted with permission from Mukai et al.102 

Figure 3

Contribution of each pathway in the respective anaphylaxis model. A pathway is represented by a cell type, the antibody class, and the mediator released. Contribution (Yes, green box) or no contribution (No, red box) to a particular anaphylaxis model is indicated. Contradictory results are indicated (white box). If identified, responsible FcRs are indicated between parentheses. N.A. indicates not analyzed. Corresponding references are provided. Adapted with permission from Mukai et al.102 

Close modal

IgG-induced PSA.

IgG-induced PSA is elicited by injecting mice systemically with IgG antibodies 2 to 3 hours before an intravenous challenge with a specific antigen. Alternatively, preformed IgG immune complexes can be injected intravenously. Similar symptoms, with comparable kinetics, develop during IgE- and IgG-induced PSA. Passively administered IgG1-immune complexes induce anaphylaxis (IgG1-induced PSA) that relied exclusively on FcγRIII.38  IgG1-induced PSA was reported to be negatively regulated by inhibitory FcγRIIB.48  Indeed, FcγRIII and FcγRIIB are the only receptors for mouse IgG1 (Figure 2). Surprisingly, IgG1-induced PSA was not abrogated in mast cell-deficient mice.54  The depletion of monocytes/macrophages, NK cells, or neutrophils had no effect, whereas basophil depletion abrogated IgG1-induced PSA.87  Basophil-deficient mice, however, develop IgG1-induced PSA,90  which is in contradiction with the result obtained after depletion of basophils. Whatever the cell subset involved, the activation of this subset during IgG1-induced PSA should lead to the production of platelet-activating factor (PAF). Indeed, PAF was reported to be responsible for IgG1-induced PSA.87  Passively administered IgG2b-IC also induce anaphylaxis (IgG2b-induced PSA) that relied exclusively on FcγRIV.38  Surprisingly, the depletion of neutrophils was sufficient to abolish IgG2b-induced PSA. IgG2b-induced PSA therefore relies on FcγRIV and neutrophils and is correlated with elevated serum levels of PAF (Figure 3). Passively administered immune complexes made of antigen-specific polyclonal IgG (pIgG) antibodies and antigen also induce anaphylaxis (pIgG-induced PSA). pIgG are essentially of the IgG1 and IgG2a/b subclasses. One may therefore consider that pIgG-induced PSA recapitulates IgG1- and IgG2b-induced PSA. pIgG-induced PSA was reduced after blocking of FcγRIV and was abolished after depletion of neutrophils.38  Therefore, pIgG-induced PSA relies on neutrophils and at least partially on FcγRIV.

ASA.

ASA is elicited by injection of antigen-immunized mice with the same antigen. ASA therefore resemble human anaphylaxis that arises in patients sensitized against a specific antigen/allergen. Unexpectedly, results obtained in ASA models have not correlated well with most results obtained in passive anaphylaxis models. Indeed, neither IgE,91  FcϵRI,54  mast cells, nor basophils86,87  are mandatory for the induction of ASA. ASA even occurred in the absence of both mast cells and basophils.87  In a model of ASA induced by an intravenous injection of goat IgG in mice immunized with goat IgG anti–mouse IgD, the injection of anti-FcγRIIB/III blocking mAb 2.4G2 abolished the reaction, suggesting that FcγRIII is mandatory to induce ASA in this model (GaMD-ASA). Neither mast cells, granulocytes, nor platelets were required, but, surprisingly, blockade of monocyte/macrophage activation abolished the reaction.92  Activation of monocytes/macrophages can result in PAF release93 ; indeed, PAF-R antagonists abolish GaMD-ASA.92  We, however, recently demonstrated that monocyte/macrophages do not contribute to ASA using a different model in which mice are immunized with BSA in Freund adjuvant and challenged with BSA38  (BSA-ASA). Unexpectedly, neutrophils (predominantly) and basophils (modestly) contributed to the shock. As expected,54  ASA occurred in WT mice, but not in FcRγ−/− mice that express no activating IgE and IgG receptors. ASA was abolished in mice injected with anti-FcγRIII and anti-FcγRIV mAbs. Even though antigen-specific IgG and antigen-specific IgE are present in these mice at the time of disease induction, the IgG receptors FcγRIII and FcγRIV are responsible for ASA induction. In agreement with the results obtained in GaMD-ASA,92  PAF receptor antagonists strongly inhibited BSA-ASA.38  Altogether, these data propose on the one hand that macrophages activated after FcγRIII engagement release PAF that is responsible for GaMD-ASA and, on the other hand, that neutrophils (and basophils) activated after FcγRIII and FcγRIV engagement release PAF that is responsible for BSA-ASA (Figure 3). Importantly, the transfer of human neutrophils restored BSA-ASA in anaphylaxis-resistant mice,38  suggesting a role for neutrophils in human anaphylaxis. Supporting this hypothesis, 95% of human neutrophils express only activating IgG receptors (hFcγRIIA and, inducibly, hFcγRI) and, in atopic persons, IgE receptors (FcϵRI),94  but no inhibitory IgG receptor (FcγRIIB).11  Human neutrophils are thus prone to activation after encounter of immune complexes.

Anaphylaxis in FcR-humanized mice.

In 1996, the generation of the first human FcR transgenic mice allowed the investigation of its role in PSA. Indeed, IgE-PSA was restored in mice transgenic for hFcϵRI and deficient for mouse FcϵRI, but not in mice that did not carry the human transgene.95  This pioneer work demonstrated that anaphylaxis could be reconstituted in an “FcR-humanized” mouse. Taking advantage of the cross-binding of mouse IgE to hFcϵRI, the authors injected antigen-specific mouse IgE that bound to hFcϵRI in vivo before antigen challenge to induce anaphylaxis. The responsible cell population was, however, not identified. Until recently, no other report has investigated the role, if any, of human IgG receptors in anaphylaxis using hFcγR-transgenic or knock-in mice. We investigated the ability of hFcγRIIA to induce anaphylaxis in hFcγRIIAtg mice for 2 reasons: (1) human neutrophils can restore anaphylaxis when transferred to anaphylaxis-resistant mice38 ; and (2) human neutrophils constitutively express only one activating IgG receptor, hFcγRIIA. Cross-binding of mouse IgG1, IgG2a, and IgG2b subclasses to hFcγRIIA38  allowed testing of active systemic anaphylaxis (BSA-ASA) in hFcγRIIAtg FcRγ−/−mice but also PSA and PCA using mouse or human immune complexes. hFcγRIIA could induce fatal ASA, PSA, and PCA, which were abolished by specific anti-hFcγRIIA blocking mAbs. hFcγRIIA expressed in transgenic mice can therefore replace mouse IgG receptors FcγRIII and FcγRIV in the induction of anaphylaxis. hFcγRIIA-dependent PCA required mast cells,76  in agreement with FcγRIII-dependent PCA47  and FcϵRI-dependent PCA,96  which also required mast cells. The induction of hFcγRIIA-dependent PSA required neutrophils and monocyte/macrophages but did not require mast cells or basophils. These results support and strengthen results obtained on the contribution of neutrophils and monocytes/macrophages to systemic anaphylaxis in WT mice.38,92  The mediators responsible for the induction of hFcγRIIA-dependent anaphylaxis have not been identified yet. hFcγRIIA engagement on human monocytes and neutrophils has been reported to lead to PAF release38  among that of several anaphylactogenic mediators.93  PAF may therefore contribute to hFcγRIIA-dependent anaphylaxis.

The field of Fc receptors has increased in complexity after the identification of a novel IgG receptor in 2005.24  The generation of knockouts for each mouse FcR and of specific (blocking) anti-FcR mAbs, nevertheless, enabled to establish a refined picture of FcR properties and functions in vivo. Models of arthritis, thrombocytopenia, and anaphylaxis have benefited largely from these advances, and more disease models are currently being similarly analyzed. Blocking FcγRs in vivo using specific mAbs will certainly become the experimental approach of choice to address their function in vivo, as it avoids genetic background issues and phenotypic variations among knockouts. In this line of reasoning, experiments using blocking anti-FcγRIIB mAbs in vivo may enable to determine the exact contribution of this inhibitory receptor to experimental disease models. Indeed, FcγRIIB−/− mice were reported to develop myeloproliferation, hypergammaglobulinemia, and autoantibodies leading to strain-specific spontaneous autoimmune diseases.7,97  These alterations may contribute to render these mice hypersensitive to experimental models of disease without a direct involvement of FcγRIIB during their induction phase.

Like mouse IgE receptor FcϵRI and mouse IgG receptors FcγRIII and FcγRIV, human IgE receptor hFcϵRI and human IgG receptor hFcγRIIA are sufficient to trigger IgE- and IgG-induced systemic anaphylaxis, respectively, when expressed in mice.76,95  Previous studies demonstrated that hFcγRIIA is also sufficient to induce experimental thrombocytopenia68  and arthritis.73,75  All these results, however, have been obtained in mice expressing only one hFcR, in the absence of the inhibitory hFcγRIIB, and in the absence of other activating hFcγRs or hFcRn that may regulate or contribute to disease induction/progression. If other human IgG receptors play a role in these diseases in humans, other cell types than those identified so far may contribute to, or even be responsible for, their induction. Illustrating this view, FcRn was reported to be expressed more widely than expected (ie, also on monocytes/macrophages and neutrophils; Tables 1 and 3). In addition, the functions of FcRn were reported to compose also antigen uptake and processing by DCs17,32  and phagocytosis of IgG-opsonized bacteria by neutrophils.4  hFcRn might therefore contribute to more models of disease (or therapy) than initially thought and should be studied in vivo when coexpressed with hFcγRs. Another example is hFcγRIIIB, which has been reported to be expressed not only on neutrophils, but also on basophils.15  hFcγRIIIB has been recently reported to play specialized roles on neutrophils, different from those played by hFcγRIIA.2  Creating mouse models expressing multiple or, preferably, all hFcRs (with the same expression pattern as that found in humans) may be a necessity to comprehend their role in disease induction/modulation, and thereby of the cells expressing them. The recent report by Smith et al using a model of mice expressing multiple hFcγRs72  opens the way to performing these analyses. More efforts, however, will be necessary to obtain mice whose expression patterns of hFcγRs fully reproduce that found in humans, in particular on DCs and effector myeloid populations.

Finally, data published on different models of systemic anaphylaxis compile in a rather complicated picture on the various cell types, antibody receptors, and mediators involved (Figure 3). That neither mast cells nor IgE, but rather neutrophils, monocytes/macrophages, and IgG, concur to models of ASA is unexpected and opens novel areas of research in human anaphylaxis.98-100  Noticeably, neutrophils not only contribute to ASA, they are also responsible for 2 models of IgG-induced PSA38  in WT mice. Both monocytes/macrophages and neutrophils also contribute to PSA induced by human IgG receptor FcγRIIA.76  This receptor is expressed by human neutrophils that can induce anaphylaxis when transferred in resistant mice and that are the major PAF-producing cell population.93  Therefore, that PAF and, to a minor extent, histamine are responsible for ASA calls to reevaluate PAF contribution in anaphylaxis based on the findings summarized in this review. Supporting a role for PAF in anaphylactic reactions in the clinic, serum PAF concentration was shown to correlate with the severity of anaphylactic shock.101  Of note, one may consider only results obtained with models of ASA as human anaphylaxis is essentially active (ie, allergen-sensitized persons encountering that allergen). Passive cases of anaphylaxis may nevertheless occur, for example, after transfusion or organ transplantation from sensitized donors, or after therapeutic antibody treatment.

The author thanks Dr K. Garrod (Unité des Dynamiques des Réponses Immunes, Institut Pasteur, Paris, France) for editing the manuscript.

This work was supported by the Institut Pasteur, Inserm, the Agence Nationale de la Recherche (grant 09-GENO-014-01), the Société Française d'Allergologie, Arthritis-Fondation Courtin, the Association pour la Recherche sur le Cancer, and the Ligue Nationale contre le Cancer.

Contribution: P.B. designed and wrote the review.

Conflict-of-interest disclosure: The author declares no competing financial interests.

Correspondence: Pierre Bruhns, Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; e-mail: bruhns@pasteur.fr.

1
Daëron
 
M
Fc receptor biology.
Annu Rev Immunol
1997
, vol. 
15
 (pg. 
203
-
234
)
2
Tsuboi
 
N
Asano
 
K
Lauterbach
 
M
Mayadas
 
TN
Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases.
Immunity
2008
, vol. 
28
 
6
(pg. 
833
-
846
)
3
Yoshida
 
M
Claypool
 
SM
Wagner
 
JS
et al. 
Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells.
Immunity
2004
, vol. 
20
 
6
(pg. 
769
-
783
)
4
Vidarsson
 
G
Stemerding
 
AM
Stapleton
 
NM
et al. 
FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis.
Blood
2006
, vol. 
108
 
10
(pg. 
3573
-
3579
)
5
Ra
 
C
Jouvin
 
MH
Blank
 
U
Kinet
 
JP
A macrophage Fc gamma receptor and the mast cell receptor for IgE share an identical subunit.
Nature
1989
, vol. 
341
 
6244
(pg. 
752
-
754
)
6
Daëron
 
M
Jaeger
 
S
Du Pasquier
 
L
Vivier
 
E
Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future.
Immunol Rev
2008
, vol. 
224
 
1
(pg. 
11
-
43
)
7
Smith
 
KG
Clatworthy
 
MR
FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications.
Nat Rev Immunol
2010
, vol. 
10
 
5
(pg. 
328
-
343
)
8
Metes
 
D
Ernst
 
LK
Chambers
 
WH
Sulica
 
A
Herberman
 
RB
Morel
 
PA
Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene.
Blood
1998
, vol. 
91
 
7
(pg. 
2369
-
2380
)
9
van der Heijden
 
J
Breunis
 
WB
Geissler
 
J
de Boer
 
M
van den Berg
 
TK
Kuijpers
 
TW
Phenotypic variation in IgG receptors by nonclassical FCGR2C alleles.
J Immunol
2012
, vol. 
188
 
3
(pg. 
1318
-
1324
)
10
Magnusson
 
SE
Engstrom
 
M
Jacob
 
U
Ulfgren
 
AK
Kleinau
 
S
High synovial expression of the inhibitory FcgammaRIIb in rheumatoid arthritis.
Arthritis Res Ther
2007
, vol. 
9
 
3
pg. 
R51
 
11
Veri
 
MC
Gorlatov
 
S
Li
 
H
et al. 
Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization.
Immunology
2007
, vol. 
121
 
3
(pg. 
392
-
404
)
12
Ravetch
 
JV
Kinet
 
JP
Fc receptors.
Annu Rev Immunol
1991
, vol. 
9
 (pg. 
457
-
492
)
13
Okayama
 
Y
Kirshenbaum
 
AS
Metcalfe
 
DD
Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: up-regulation by IFN-gamma.
J Immunol
2000
, vol. 
164
 
8
(pg. 
4332
-
4339
)
14
Zhao
 
W
Kepley
 
CL
Morel
 
PA
Okumoto
 
LM
Fukuoka
 
Y
Schwartz
 
LB
Fc gamma RIIa, not Fc gamma RIIb, is constitutively and functionally expressed on skin-derived human mast cells.
J Immunol
2006
, vol. 
177
 
1
(pg. 
694
-
701
)
15
Meknache
 
N
Jönsson
 
F
Laurent
 
J
Guinnepain
 
MT
Daëron
 
M
Human basophils express the glycosylphosphatidylinositol-anchored low-affinity IgG receptor FcgammaRIIIB (CD16B).
J Immunol
2009
, vol. 
182
 
4
(pg. 
2542
-
2550
)
16
Zhu
 
X
Meng
 
G
Dickinson
 
BL
et al. 
MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells.
J Immunol
2001
, vol. 
166
 
5
(pg. 
3266
-
3276
)
17
Roopenian
 
DC
Akilesh
 
S
FcRn: the neonatal Fc receptor comes of age.
Nat Rev Immunol
2007
, vol. 
7
 
9
(pg. 
715
-
725
)
18
Bruhns
 
P
Iannascoli
 
B
England
 
P
et al. 
Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses.
Blood
2009
, vol. 
113
 (pg. 
3716
-
3725
)
19
Tao
 
MH
Smith
 
RI
Morrison
 
SL
Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation.
J Exp Med
1993
, vol. 
178
 
2
(pg. 
661
-
667
)
20
Clynes
 
R
Antitumor antibodies in the treatment of cancer: Fc receptors link opsonic antibody with cellular immunity.
Hematol Oncol Clin North Am
2006
, vol. 
20
 
3
(pg. 
585
-
612
)
21
Lu
 
J
Ellsworth
 
JL
Hamacher
 
N
Oak
 
SW
Sun
 
PD
Crystal structure of Fcgamma receptor I and its implication in high affinity gamma-immunoglobulin binding.
J Biol Chem
2011
, vol. 
286
 
47
(pg. 
40608
-
40613
)
22
Goebl
 
NA
Babbey
 
CM
Datta-Mannan
 
A
Witcher
 
DR
Wroblewski
 
VJ
Dunn
 
KW
Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells.
Mol Biol Cell
2008
, vol. 
19
 
12
(pg. 
5490
-
5505
)
23
West
 
AP
Bjorkman
 
PJ
Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor.
Biochemistry
2000
, vol. 
39
 
32
(pg. 
9698
-
9708
)
24
Nimmerjahn
 
F
Bruhns
 
P
Horiuchi
 
K
Ravetch
 
JV
Fc gamma RIV: a novel FcR with distinct IgG subclass specificity.
Immunity
2005
, vol. 
23
 
1
(pg. 
41
-
51
)
25
Hirano
 
M
Davis
 
RS
Fine
 
WD
et al. 
IgE(b) immune complexes activate macrophages through Fc gamma RIV binding.
Nat Immunol
2007
, vol. 
8
 
7
(pg. 
762
-
771
)
26
Mancardi
 
DA
Iannascoli
 
B
Hoos
 
S
England
 
P
Daeron
 
M
Bruhns
 
P
FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation.
J Clin Invest
2008
, vol. 
118
 
11
(pg. 
3738
-
3750
)
27
Gavin
 
AL
Barnes
 
N
Dijstelbloem
 
HM
Hogarth
 
PM
Identification of the mouse IgG3 receptor: implications for antibody effector function at the interface between innate and adaptive immunity.
J Immunol
1998
, vol. 
160
 
1
(pg. 
20
-
23
)
28
Takizawa
 
F
Adamczewski
 
M
Kinet
 
JP
Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII.
J Exp Med
1992
, vol. 
176
 
2
(pg. 
469
-
475
)
29
Holmes
 
KL
Palfree
 
RG
Hammerling
 
U
Morse
 
HC
Alleles of the Ly-17 alloantigen define polymorphisms of the murine IgG Fc receptor.
Proc Natl Acad Sci U S A
1985
, vol. 
82
 
22
(pg. 
7706
-
7710
)
30
Andren
 
M
Johanneson
 
B
Alarcon-Riquelme
 
ME
Kleinau
 
S
IgG Fc receptor polymorphisms and association with autoimmune disease.
Eur J Immunol
2005
, vol. 
35
 
10
(pg. 
3020
-
3029
)
31
Junghans
 
RP
Anderson
 
CL
The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.
Proc Natl Acad Sci U S A
1996
, vol. 
93
 
11
(pg. 
5512
-
5516
)
32
Yoshida
 
M
Kobayashi
 
K
Kuo
 
TT
et al. 
Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria.
J Clin Invest
2006
, vol. 
116
 
8
(pg. 
2142
-
2151
)
33
Tan
 
PS
Gavin
 
AL
Barnes
 
N
et al. 
Unique monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells.
J Immunol
2003
, vol. 
170
 
5
(pg. 
2549
-
2556
)
34
Langlet
 
C
Tamoutounour
 
S
Henri
 
S
et al. 
CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization.
J Immunol
2012
, vol. 
188
 
4
(pg. 
1751
-
1760
)
35
Biburger
 
M
Aschermann
 
S
Schwab
 
I
et al. 
Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo.
Immunity
2011
, vol. 
35
 
6
(pg. 
932
-
944
)
36
Kim
 
HY
Kim
 
S
Chung
 
DH
FcgammaRIII engagement provides activating signals to NKT cells in antibody-induced joint inflammation.
J Clin Invest
2006
, vol. 
116
 
9
(pg. 
2484
-
2492
)
37
Montoyo
 
HP
Vaccaro
 
C
Hafner
 
M
Ober
 
RJ
Mueller
 
W
Ward
 
ES
Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice.
Proc Natl Acad Sci U S A
2009
, vol. 
106
 
8
(pg. 
2788
-
2793
)
38
Jönsson
 
F
Mancardi
 
DA
Kita
 
Y
et al. 
Mouse and human neutrophils induce anaphylaxis.
J Clin Invest
2011
, vol. 
121
 
4
(pg. 
1484
-
1496
)
39
Ober
 
RJ
Radu
 
CG
Ghetie
 
V
Ward
 
ES
Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies.
Int Immunol
2001
, vol. 
13
 
12
(pg. 
1551
-
1559
)
40
Petkova
 
SB
Akilesh
 
S
Sproule
 
TJ
et al. 
Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease.
Int Immunol
2006
, vol. 
18
 
12
(pg. 
1759
-
1769
)
41
Mancardi
 
DA
Jonsson
 
F
Iannascoli
 
B
et al. 
The murine high-affinity IgG receptor Fc(gamma)RIV is sufficient for autoantibody-induced arthritis.
J Immunol
2011
, vol. 
186
 
4
(pg. 
1899
-
1903
)
42
Mechetina
 
LV
Najakshin
 
AM
Alabyev
 
BY
Chikaev
 
NA
Taranin
 
AV
Identification of CD16-2, a novel mouse receptor homologous to CD16/Fc gamma RIII.
Immunogenetics
2002
, vol. 
54
 
7
(pg. 
463
-
468
)
43
Takai
 
T
Li
 
M
Sylvestre
 
D
Clynes
 
R
Ravetch
 
JV
FcR gamma chain deletion results in pleiotrophic effector cell defects.
Cell
1994
, vol. 
76
 
3
(pg. 
519
-
529
)
44
Yamasaki
 
S
Ishikawa
 
E
Sakuma
 
M
Hara
 
H
Ogata
 
K
Saito
 
T
Mincle is an ITAM-coupled activating receptor that senses damaged cells.
Nat Immunol
2008
, vol. 
9
 
10
(pg. 
1179
-
1188
)
45
Merck
 
E
Gaillard
 
C
Gorman
 
DM
et al. 
OSCAR is an FcRgamma-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells.
Blood
2004
, vol. 
104
 
5
(pg. 
1386
-
1395
)
46
Takai
 
T
Ono
 
M
Hikida
 
M
Ohmori
 
H
Ravetch
 
JV
Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice.
Nature
1996
, vol. 
379
 
6563
(pg. 
346
-
349
)
47
Hazenbos
 
WL
Gessner
 
JE
Hofhuis
 
FM
et al. 
Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice.
Immunity
1996
, vol. 
5
 
2
(pg. 
181
-
188
)
48
Ujike
 
A
Ishikawa
 
Y
Ono
 
M
et al. 
Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG.
J Exp Med
1999
, vol. 
189
 
10
(pg. 
1573
-
1579
)
49
Barnes
 
N
Gavin
 
AL
Tan
 
PS
Mottram
 
P
Koentgen
 
F
Hogarth
 
PM
FcgammaRI-deficient mice show multiple alterations to inflammatory and immune responses.
Immunity
2002
, vol. 
16
 
3
(pg. 
379
-
389
)
50
Ioan-Facsinay
 
A
de Kimpe
 
SJ
Hellwig
 
SM
et al. 
Fc gamma RI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection.
Immunity
2002
, vol. 
16
 
3
(pg. 
391
-
402
)
51
Chaudhury
 
C
Mehnaz
 
S
Robinson
 
JM
et al. 
The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan.
J Exp Med
2003
, vol. 
197
 
3
(pg. 
315
-
322
)
52
Nimmerjahn
 
F
Lux
 
A
Albert
 
H
et al. 
FcgammaRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo.
Proc Natl Acad Sci U S A
2010
, vol. 
107
 
45
(pg. 
19396
-
19401
)
53
Syed
 
SN
Konrad
 
S
Wiege
 
K
et al. 
Both FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III autoimmune responses via FcRgamma-LAT-dependent generation of C5a.
Eur J Immunol
2009
, vol. 
39
 
12
(pg. 
3343
-
3356
)
54
Miyajima
 
I
Dombrowicz
 
D
Martin
 
TR
Ravetch
 
JV
Kinet
 
JP
Galli
 
SJ
Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII: assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis.
J Clin Invest
1997
, vol. 
99
 
5
(pg. 
901
-
914
)
55
Ji
 
H
Ohmura
 
K
Mahmood
 
U
et al. 
Arthritis critically dependent on innate immune system players.
Immunity
2002
, vol. 
16
 
2
(pg. 
157
-
168
)
56
Bruhns
 
P
Samuelsson
 
A
Pollard
 
JW
Ravetch
 
JV
Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease.
Immunity
2003
, vol. 
18
 
4
(pg. 
573
-
581
)
57
Diaz de Ståhl
 
T
Andren
 
M
Martinsson
 
P
Verbeek
 
JS
Kleinau
 
S
Expression of FcgammaRIII is required for development of collagen-induced arthritis.
Eur J Immunol
2002
, vol. 
32
 
10
(pg. 
2915
-
2922
)
58
Akilesh
 
S
Petkova
 
S
Sproule
 
TJ
Shaffer
 
DJ
Christianson
 
GJ
Roopenian
 
D
The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease.
J Clin Invest
2004
, vol. 
113
 
9
(pg. 
1328
-
1333
)
59
Samuelsson
 
A
Towers
 
TL
Ravetch
 
JV
Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor.
Science
2001
, vol. 
291
 
5503
(pg. 
484
-
486
)
60
Nimmerjahn
 
F
Ravetch
 
JV
Anti-inflammatory actions of intravenous immunoglobulin.
Annu Rev Immunol
2008
, vol. 
26
 (pg. 
513
-
533
)
61
Siragam
 
V
Crow
 
AR
Brinc
 
D
Song
 
S
Freedman
 
J
Lazarus
 
AH
Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells.
Nat Med
2006
, vol. 
12
 
6
(pg. 
688
-
692
)
62
Park-Min
 
KH
Serbina
 
NV
Yang
 
W
et al. 
FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin.
Immunity
2007
, vol. 
26
 
1
(pg. 
67
-
78
)
63
Araujo
 
LM
Chauvineau
 
A
Zhu
 
R
et al. 
Cutting edge: intravenous Ig inhibits invariant NKT cell-mediated allergic airway inflammation through FcgammaRIIIA-dependent mechanisms.
J Immunol
2011
, vol. 
186
 
6
(pg. 
3289
-
3293
)
64
Aloulou
 
M
Ben Mkaddem
 
S
Biarnes-Pelicot
 
M
et al. 
IgG1 and IVIg induce inhibitory ITAM signaling through FcgammaRIII controlling inflammatory responses.
Blood
2012
, vol. 
119
 
13
(pg. 
3084
-
3096
)
65
Boross
 
P
van Lent
 
PL
Martin-Ramirez
 
J
et al. 
Destructive arthritis in the absence of both FcgammaRI and FcgammaRIII.
J Immunol
2008
, vol. 
180
 
7
(pg. 
5083
-
5091
)
66
Korganow
 
AS
Ji
 
H
Mangialaio
 
S
et al. 
From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins.
Immunity
1999
, vol. 
10
 
4
(pg. 
451
-
461
)
67
Heijnen
 
IA
van Vugt
 
MJ
Fanger
 
NA
et al. 
Antigen targeting to myeloid-specific human Fc gamma RI/CD64 triggers enhanced antibody responses in transgenic mice.
J Clin Invest
1996
, vol. 
97
 
2
(pg. 
331
-
338
)
68
McKenzie
 
SE
Taylor
 
SM
Malladi
 
P
et al. 
The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model.
J Immunol
1999
, vol. 
162
 
7
(pg. 
4311
-
4318
)
69
Li
 
F
Ravetch
 
JV
Inhibitory Fcgamma receptor engagement drives adjuvant and anti–tumor activities of agonistic CD40 antibodies.
Science
2011
, vol. 
333
 
6045
(pg. 
1030
-
1034
)
70
Li
 
M
Wirthmueller
 
U
Ravetch
 
JV
Reconstitution of human Fc gamma RIII cell type specificity in transgenic mice.
J Exp Med
1996
, vol. 
183
 
3
(pg. 
1259
-
1263
)
71
Repp
 
R
Valerius
 
T
Sendler
 
A
et al. 
Neutrophils express the high affinity receptor for IgG (Fc gamma RI, CD64) after in vivo application of recombinant human granulocyte colony-stimulating factor.
Blood
1991
, vol. 
78
 
4
(pg. 
885
-
889
)
72
Smith
 
P
Dilillo
 
DJ
Bournazos
 
S
Li
 
F
Ravetch
 
JV
Mouse model recapitulating human Fcgamma receptor structural and functional diversity.
Proc Natl Acad Sci U S A
2012
, vol. 
109
 
16
(pg. 
6181
-
6186
)
73
Tan Sardjono
 
C
Mottram
 
PL
van de Velde
 
NC
et al. 
Development of spontaneous multisystem autoimmune disease and hypersensitivity to antibody-induced inflammation in Fcgamma receptor IIa-transgenic mice.
Arthritis Rheum
2005
, vol. 
52
 
10
(pg. 
3220
-
3229
)
74
McIntosh
 
RS
Shi
 
J
Jennings
 
RM
et al. 
The importance of human FcgammaRI in mediating protection to malaria.
PLoS Pathog
2007
, vol. 
3
 
5
pg. 
e72
 
75
Pietersz
 
GA
Mottram
 
PL
van de Velde
 
NC
et al. 
Inhibition of destructive autoimmune arthritis in FcgammaRIIa transgenic mice by small chemical entities.
Immunol Cell Biol
2009
, vol. 
87
 
1
(pg. 
3
-
12
)
76
Jönsson
 
F
Mancardi
 
DA
Zhao
 
W
et al. 
Human FcgammaRIIA induces anaphylactic and allergic reactions.
Blood
2012
, vol. 
119
 
11
(pg. 
2533
-
2544
)
77
Monach
 
PA
Mathis
 
D
Benoist
 
C
The K/BxN arthritis model.
Curr Protoc Immunol
2008
 
Chapter 15:Unit 15:22
78
Solomon
 
S
Rajasekaran
 
N
Jeisy-Walder
 
E
Snapper
 
SB
Illges
 
H
A crucial role for macrophages in the pathology of K/B x N serum-induced arthritis.
Eur J Immunol
2005
, vol. 
35
 
10
(pg. 
3064
-
3073
)
79
Wipke
 
BT
Allen
 
PM
Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis.
J Immunol
2001
, vol. 
167
 
3
(pg. 
1601
-
1608
)
80
Monach
 
PA
Nigrovic
 
PA
Chen
 
M
et al. 
Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1.
Arthritis Rheum
2010
, vol. 
62
 
3
(pg. 
753
-
764
)
81
Elliott
 
ER
Van Ziffle
 
JA
Scapini
 
P
Sullivan
 
BM
Locksley
 
RM
Lowell
 
CA
Deletion of Syk in neutrophils prevents immune complex arthritis.
J Immunol
2011
, vol. 
187
 
8
(pg. 
4319
-
4330
)
82
Lee
 
DM
Friend
 
DS
Gurish
 
MF
Benoist
 
C
Mathis
 
D
Brenner
 
MB
Mast cells: a cellular link between autoantibodies and inflammatory arthritis.
Science
2002
, vol. 
297
 
5587
(pg. 
1689
-
1692
)
83
Feyerabend
 
TB
Weiser
 
A
Tietz
 
A
et al. 
Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.
Immunity
2011
, vol. 
35
 
5
(pg. 
832
-
844
)
84
Tsuboi
 
N
Ernandez
 
T
Li
 
X
et al. 
Regulation of human neutrophil Fcgamma receptor IIa by C5a receptor promotes inflammatory arthritis in mice.
Arthritis Rheum
2011
, vol. 
63
 
2
(pg. 
467
-
478
)
85
Zhou
 
JS
Xing
 
W
Friend
 
DS
Austen
 
KF
Katz
 
HR
Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis.
J Exp Med
2007
, vol. 
204
 
12
(pg. 
2797
-
2802
)
86
Dombrowicz
 
D
Flamand
 
V
Brigman
 
KK
Koller
 
BH
Kinet
 
JP
Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene.
Cell
1993
, vol. 
75
 
5
(pg. 
969
-
976
)
87
Tsujimura
 
Y
Obata
 
K
Mukai
 
K
et al. 
Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis.
Immunity
2008
, vol. 
28
 
4
(pg. 
581
-
589
)
88
Makabe-Kobayashi
 
Y
Hori
 
Y
Adachi
 
T
et al. 
The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis.
J Allergy Clin Immunol
2002
, vol. 
110
 
2
(pg. 
298
-
303
)
89
Kimura
 
S
Watanabe
 
A
Takeuchi
 
M
Nagata
 
M
Harada
 
M
Suppressive effects of antihistaminic and/or anti–PAF agents on passive anaphylactic shock in mice sensitized with allogeneic monoclonal IgE and IgG1 antibodies and hyperimmune serum.
Immunol Invest
1998
, vol. 
27
 
6
(pg. 
379
-
393
)
90
Ohnmacht
 
C
Schwartz
 
C
Panzer
 
M
Schiedewitz
 
I
Naumann
 
R
Voehringer
 
D
Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths.
Immunity
2010
, vol. 
33
 
3
(pg. 
364
-
374
)
91
Oettgen
 
HC
Martin
 
TR
Wynshaw-Boris
 
A
Deng
 
C
Drazen
 
JM
Leder
 
P
Active anaphylaxis in IgE-deficient mice.
Nature
1994
, vol. 
370
 
6488
(pg. 
367
-
370
)
92
Strait
 
RT
Morris
 
SC
Yang
 
M
Qu
 
XW
Finkelman
 
FD
Pathways of anaphylaxis in the mouse.
J Allergy Clin Immunol
2002
, vol. 
109
 
4
(pg. 
658
-
668
)
93
Jouvin-Marche
 
E
Ninio
 
E
Beaurain
 
G
Tence
 
M
Niaudet
 
P
Benveniste
 
J
Biosynthesis of Paf-acether (platelet-activating factor): VII. Precursors of Paf-acether and acetyl-transferase activity in human leukocytes.
J Immunol
1984
, vol. 
133
 
2
(pg. 
892
-
898
)
94
Gounni
 
AS
Lamkhioued
 
B
Koussih
 
L
Ra
 
C
Renzi
 
PM
Hamid
 
Q
Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc epsilon RI): role in asthma.
FASEB J
2001
, vol. 
15
 
6
(pg. 
940
-
949
)
95
Dombrowicz
 
D
Brini
 
AT
Flamand
 
V
et al. 
Anaphylaxis mediated through a humanized high affinity IgE receptor.
J Immunol
1996
, vol. 
157
 
4
(pg. 
1645
-
1651
)
96
Arimura
 
A
Nagata
 
M
Takeuchi
 
M
Watanabe
 
A
Nakamura
 
K
Harada
 
M
Active and passive cutaneous anaphylaxis in WBB6F1 mouse, a mast cell-deficient strain.
Immunol Invest
1990
, vol. 
19
 
3
(pg. 
227
-
233
)
97
Bolland
 
S
Ravetch
 
JV
Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis.
Immunity
2000
, vol. 
13
 
2
(pg. 
277
-
285
)
98
Finkelman
 
FD
Rothenberg
 
ME
Brandt
 
EB
Morris
 
SC
Strait
 
RT
Molecular mechanisms of anaphylaxis: lessons from studies with murine models.
J Allergy Clin Immunol
2005
, vol. 
115
 
3
(pg. 
449
-
457
)
99
Lowell
 
CA
Neutrophils give us a shock.
J Clin Invest
2011
, vol. 
121
 
4
(pg. 
1260
-
1263
)
100
Bordon
 
Y
Allergy: shocking behaviour.
Nat Rev Immunol
2011
, vol. 
11
 
5
(pg. 
302
-
303
)
101
Vadas
 
P
Gold
 
M
Perelman
 
B
et al. 
Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis.
N Engl J Med
2008
, vol. 
358
 
1
(pg. 
28
-
35
)
102
Mukai
 
K
Obata
 
K
Tsujimura
 
Y
Karasuyama
 
H
New insights into the roles for basophils in acute and chronic allergy.
Allergol Int
2009
, vol. 
58
 
1
(pg. 
11
-
19
)
Sign in via your Institution