Abstract 3257

The regulatory mechanisms of platelet homeostasis remain elusive. We investigated here the role of hepatic asialoglycoprotein receptor (a.k.a. Ashwell-Morell receptor) in platelet clearance. Mice lacking the hepatic asialoglycoprotein receptor Asgpr2 subunit had increased platelet survivals (T1/2 = 49.5±2h) when compared to wild type (WT, T1/2 = 31±4h) mice. Consequently, Asgpr2−/− mice had platelet counts increased by ∼20%, compared to WT, with increased terminal galactose exposure, as demonstrated using the galactose specific lectin RCA1. Bone marrow and spleen megakaryocyte numbers were reduced by ∼15% and ∼20% in Asgpr2−/− mice, compared to WT mice. Sialidase (NA, Clostidium perfringens, 50mU/mice) maximally desialylated circulating platelets when injected intravenously, as evidenced by increased RCA1 binding. Sialidase injection resulted in a ∼60% depletion of circulating platelets after 24h in Asgpr2−/− mice, compared to >90% in WT mice, indicating that desialylated platelets were partially removed by Asgpr1/2. In contrast to platelets, red blood cell counts were unaffected by sialidase treatment. Sialidase injection for 72h resulted in a 2.3-fold and 1.2-fold increase in megakaryocyte numbers in the spleen and bone marrow of WT mice, respectively, but not in Asgpr2−/− mice. In contrast to sialidase treatment, injections of rabbit anti-mouse platelet serum (RAMPS) depleted >95% of circulating platelets and increased by 70% bone marrow, but not spleen MK numbers in both WT and Asgpr2−/− mice. The data shows that removal of desialylated, i.e, senescent, platelets by the hepatic Ashwell-Morell receptor differs to that of antibody-mediated platelet clearance.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution