First-line therapy of acute myeloid leukemia (AML) consists of combinations of cytarabine and an anthracycline. While initial complete remissions are frequent, most patients succumb to resistant disease underlining the need for novel, more effective agents. The most striking progress in AML therapy was achieved by targeting the nuclear receptor RARα with ATRA. Research in our laboratory has demonstrated that the novel synthetic triterpenoid CDDO (2-cyano-3,12- dioxooleana-1,9-dien-28-oic acid) and its more active C28 methyl ester derivative CDDO-Me inhibit growth and induce apoptosis in a variety of cancers including AML, CLL and blast crisis CML. CDDO and to a much higher degree CDDO-Me are potent activators of the nuclear transcription factor Peroxisome Proliferator-Activated Receptor gamma (PPARγ). In a mammalian two-hybrid assay, the CDDO and CDDO-Me induced activation of PPARγ was associated with a marked increase in multiple coactivator recruitment (SRC-1, SRC-2, SRC-3, TRAP220/DRIP205, CARM-1 and PGC-1) that is qualitatively different from that induced by other PPARγ ligands. CDDO induced a higher degree of myelo-monocytic differentiation in DRIP205-overexpressing HL-60 cells suggesting that high cellular levels of DRIP205 co-activator modulate differentiation response to PPARγ ligation. CDDO induced p21 mRNA and protein in leukemic cells and transactivation of the p21 promoter in a p53-independent fashion. We have recently identified the PPARγ-independent depletion of mitochondrial glutathione (GSHm) as a novel mechanism of action resulting in redox disbalance and mitochondrial damage as mechanisms of pro-apoptotic effects of CDDO and CDDO-Me. Gene expression studies using cDNA arrays demonstrate that CDDO induces genes involved in the antioxidant response (AR) including phase II detoxifying enzymes (glutamate cysteine ligase, GSH transferase, etc.) and antioxidant enzymes (heme oxygenase 1, thioredoxin reductase). Cotreatment with the GSH precursor, n-acetyl cystein prevented apoptosis and loss of viability induced by CDDOs, whereas alkylation of intracellular thiols by diethylmaleate decreased the accumulation of a biotinylated derivative of CDDO, TP-301, in U937 leukemic cells suggesting that intracellular reduced thiols are functional targets of CDDO and its derivatives. The in vivo studies using liposomal CDDO-Me in a conditional leukemia model demonstrated significant reduction of leukemia burden as measured by bioluminescence imaging and prolongation of survival. Based on the ample pre-clinical evidence of anti-leukemia effects and on the favorable PK/toxicity profile of the parental compound, CDDO will enter Phase I clinical trials in hematologic malignancies in 3Q 2005 and CDDO-Me in 1Q 2006.

Author notes

Corresponding author

Sign in via your Institution