Mycophenolate mofetil (MMF) is a newly developed immunosuppressor, currently widely used in allogeneic bone marrow transplantation. Its active metabolite, mycophenolic acid (MPA) is a noncompetitive, reversible inhibitor of the enzyme inosine 59-monophosphate dehydrogenase, which plays a major role in the de novo synthesis of guanosine nucleotides. Unlike other cells that also use the salvage pathway for purine biosynthesis, proliferating B and T cells are dependent on the de novo pathway generate guanosine. Thus, MMF exerts its immunosuppressive effects of lymphocyte proliferation. Recently, some studies found that MPA could inhibit the immun immune function of antigen presenting cells. Dendritic cells (DCs), the most potent antigen presenting cells with the unique ability to prime naive T cells, play a central role in antigen processing and presentation to induce T cell response in vitro and in vivo. This study is to evaluate the effects of MPA, the in vivo active metabolite of MMF, on the maturation and immune function of murine bone marrow-derived dendritic cells, and to explore the underlying mechanisms of MMF in graft versus host disease. Bone marrow-derived dendritic cells (DC) were cultured with GM-CSF and IL-4 in the presence of MPA at doses of 0.01 and 0.1μmol/L. The ability of the allostimulatory activities of the DCs on allogeneic T cells was assessed by MLR. IL-12 production in culture supernatant and the Th1/Th2 cytokines such as IL-2, IFN-g, IL-4 and IL-10 levels in mixed lymphocyte reaction (MLR) supernatant were examined by ELISA assays. The activity of NF-κB in DCs was measured with Western blot assays. Our results showed that DCs cultured in the presence of MPA expressed lower levels of CD40, CD80 and CD86, exhibited weaker activity of stimulating the allogeneic T cell proliferation and weaker in antigen presenting function with a concurrent reduction of IL-12 production. MPA-treated DCs stimulated allogeneic T cells to secrete higher levels of Th2 cytokines IL-4 and IL-10 but lower levels of Th1 cytokines IL-2 and IFN-g than did DCs not treated with MPA. The activity of NF-κB was decreased in DCs treated with MPA in a dose-dependent manner. We conclude that MPA, and hence MMF, exerts a negative effect on the maturation and immune function of in vitro cultured DCs, and drives a shift of Th1 cytokines to Th2 cytokines in MLR. This negative effect is associated with a decrease in NF-κB activity. Say something about the significance of this finding regarding GVHD.

Author notes

Corresponding author

Sign in via your Institution