• Transcriptomes and enhancers of human CD4+ Tfh and non-Tfh T effector cells reveal cell type–specific differences.

  • These data are a significant resource for understanding mechanisms of normal and perturbed Tfh cell function.

T follicular helper (Tfh) cells are a subset of CD4+ T helper cells that migrate into germinal centers and promote B-cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence-activated cell sorting–based strategy, we obtained primary Tfh and non-Tfh T effector cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by chromatin immunoprecipitation–sequencing, with parallel transcriptome analyses determined by RNA sequencing. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function.

T follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) lymphocytes that migrate into the B-cell follicle and provide germinal center (GC) B cells with survival and differentiation signals essential for B-cell selection with maturation into memory B cells and long-lived antibody-secreting plasma cells.1-8  Tfh cells also secrete cytokines that enable B-cell isotype class switching appropriate to invading pathogens.5,8,9  Tfh cells can be distinguished from other Th cells by downregulation of P-selectin glycoprotein ligand 1 (PSGL-1), required for their emigration from T-cell zones of secondary lymphoid organs toward the B-cell follicle, and by their sustained expression of the transcriptional repressor B-cell lymphoma 6 (BCL6), the C-X-C chemokine receptor type 5 (CXCR5) needed for their migration into the follicle, and the programmed cell death receptor (PD-1) necessary for proper B-cell maturation therein in GCs.10,11  Although Tfh cells are essential for the GC response, much less is known about their origin, development, and function compared with other CD4 Th cell subsets.12 

Tfh cells are abnormally regulated in several inherited and acquired diseases.13,14  Expansion of dysfunctional Tfh cells is a major contributor to systemic autoimmunity, including systemic lupus erythematosus (SLE; lupus), Sjogren syndrome, and rheumatoid arthritis.15,16  Their malignant transformation results in the phenotype of angioimmunoblastic T-cell lymphoma (AITL), a subset of peripheral T-cell lymphoma (PTCL).17-21  Tfh cells are thought to be the origin of subtypes of primary cutaneous T-cell lymphoma.22,23  A possible contributory role for Tfh cells in graft-versus-host disease also has been suggested.24 

Recent advances in genomic technologies have revolutionized our understanding of gene expression and gene regulation, and their relationship to mechanisms of human disease.25  Detailed information on cellular transcriptomes obtained by RNA sequencing (RNA-seq) provides unbiased information on transcript composition and abundance, including detection of novel transcripts, novel isoforms, alternative splicing, and allele-specific expression.26-28  Similarly, genomic strategies have allowed understanding of programs controlling cellular development and differentiation by providing insight into the regulatory DNA sequences that control or regulate these programs.

Enhancers are DNA regulatory sequences with numerous, complex roles in the control of gene expression,29-32  participating in cellular development, differentiation, and cell fate determination.33-36  They assist in determining nuclear organization,32  transcription initiation, and the release of RNA polymerase II from promoter pausing,37  transcriptional competence,35  and insulator element activity.38,39  Noncoding RNAs have also been linked to enhancer function40-46  and intergenic enhancers may act as alternate, tissue-specific promoters generating abundant, spliced, multiexonic poly(A)+ RNAs.47  Secondary enhancers synergize with primary enhancers to fine-tune gene expression.48,49  Recent studies in 3-dimensional transcriptional space reveal that turning on and off enhancers during development correlates with promoter activity and that promoter-enhancer interactions are highly cell-type specific varying widely across the genome.50-53 

Numerous studies characterizing enhancers in human lymphoid cells on a genome-wide scale have been performed.54-64  Despite their biologic relevance, data are not available for human primary Tfh cell enhancers, perhaps because of the difficulty in obtaining adequate samples for analysis. Obtaining sufficient numbers from mice is also challenging, in light of the challenge differentiating these cells in vitro, in comparison with other Th cell subsets.65  Using a fluorescence-activated cell sorting (FACS)-based strategy, we obtained Tfh cells, and for comparison, non-Tfh T effector cells (hereafter, T effector or Teff cells) from tonsils. Using these purified samples, we constructed and analyzed genome-wide maps of active, intermediate, and poised enhancers, with integration of global transcriptome analyses determined by RNA-seq. Consistent with their predicted function, these important regulatory elements were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell structure and function. Many Tfh cell enhancers mapped to sites previously associated with autoimmune disease in genome-wide association studies (GWAS). A group of differentially marked active enhancers unique to Tfh cells associated with differentially expressed genes was identified. This group contained genes expressed at high levels, including PDCD1 and BCL6, which are critical for Tfh cell function. Fragments from several enhancer regions were also associated with directed statistically significant expression in reporter gene assays.

Together, these data provide a significant resource for studies of programs of gene expression in Tfh and non-Tfh Teff cells and their regulation. This will allow a deeper understanding of CD4+ lymphocyte development, differentiation, structure, and function, mechanisms of the GC response, and provide insights into normal and perturbed Tfh cell function including that associated with immune disorders and lymphomas.

Flow cytometry and cell sorting

To obtain primary human Tfh and Teff cells, human tonsils were cut into small sections and homogenized by crushing followed by straining through a 40-μM nylon filter. CD4+ T lymphocytes were enriched using a negative selection biotin-based magnetic separation kit (EasySep; StemCell Technologies) prior to cell surface staining with the antibodies to: CD4 (clone RPA-T4), CD45RA (clone HI-100), T-cell receptor β (TCRβ; clone IP26), PD-1 (clone EH12.1), CXCR5 (clone RF8B2), and PSGL-1 (clone KPL-1; all from BD Biosciences). Staining of CXCR5 was performed at room temperature (25°C) with 1-hour incubation. Intracellular staining for Foxp3 was performed using the Foxp3/Transcription Factor Staining Buffer Set (eBiosciences) following the manufacturer’s protocol. Stained and rinsed cells were analyzed using an LSRII Multilaser Cytometer (BD Biosciences) or specific populations were sorted using a FACSAria (BD Biosciences).

Cell selection and RNA analyses

RNA was isolated from lymphocytes and prepared for RNA-seq analyses as described.66  Samples were sequenced on an Illumina HiSequation 2000 using 75-bp paired-end reads. FASTQ format sequencing reads were aligned to the hg19 genome, NCBI Build 37, using TopHat Version 2.0.4 software with default parameters except minimum anchor length of 12. The EdgeR program was used to identify differences in expression of RefSeq transcripts. Filtering included transcripts with >1 tag per million reads in 3 or more samples. Quantitative real-time polymerase chain reaction (PCR) was performed to confirm expression levels of RNA transcripts (supplemental Table 1, available on the Blood Web site). Gene set enrichment analysis (GSEA) was performed as described using default parameters except 10 000 permutations were performed.67 

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed as previously described.68  Samples were immunoprecipitated with antibodies against monomethyl histone 3 lysine 4 (H3k4me1; Abcam), trimethyl histone 3 lysine 27 (Abcam), acetyl histone 3 lysine 27 (H3K27Ac; Abcam), and nonspecific rabbit immunoglobulin G (IgG; Santa Cruz Biotechnology).

High-throughput sequencing and data analyses

DNA processing and high-throughput sequencing were performed as described.66  Sequenced reads were mapped to the human genome (hg1969  NCBI Build 37) using the BWA alignment program. The Model-based Alignment of ChIP-Seq (MACS) program version 1.4.0rc2 was used to identify H3K4me1 and H3K27Ac peaks with a P value of <10e-5.70  The MACS2 program version 2.0.10.20131216 was used to identify broad regions bound by H3K27me3 that had an enrichment of fourfold or more. Localization of histone modifications relative to known genes was done using customized BedTools scripts. Motif finding was performed using the Homer algorithm (http://homer.salk.edu/homer/motif/). Conservation analyses were performed using PhastCons.71,72  The Genomic Regions Enrichment Annotations Tool (GREAT) was used to analyze functional significance of cis-regulatory regions identified by ChIP sequencing (ChIP-seq).73 

Validation of ChIP-seq results

Primers were designed for representative binding regions for all 3 antibodies in candidate enhancers identified by the MACS program (supplemental Table 2). Immunoprecipitated DNA was analyzed by quantitative real-time PCR (iCycler; Bio-Rad) as described.68 

Identification and analysis of biologically relevant SNPs

The locations of single nucleotide polymorphisms (SNPs) shown to demonstrate highly significant linkage to immune disorder-related traits (supplemental Table 3) were obtained from the UCSC genome browser database and the catalog of published GWAS compiled by the National Human Genome Research Institute (NHGRI; www.genome.gov/gwastudies).74  Using BedTools software, enhancers were intersected with immune disorder–related SNPs and overlap identified.

Reporter gene assays

Candidate enhancer regions were amplified using primers flanking the boundaries of called peaks (supplemental Table 4) and cloned upstream of an SV40 promoter-firefly luciferase reporter cassette in the pGL2Promoter plasmid. Transfections were performed as described.75  A total of 107 Jurkat cells (TIB-152; ATCC) were transfected by electroporation with a single pulse of 300 V at 950 μF with 15 μg of test plasmid and 0.3 µg of pRL-TK, a reporter plasmid expressing Renilla luciferase driven by the herpes simplex virus thymidine kinase (HSV-TK) promoter (Promega) as described.76  Two days after transfection, cell extracts were analyzed using the Dual-Luciferase assay according to the manufacturer’s instructions (Promega).

Data access

The raw data files generated by the RNA-seq and ChIP-seq analyses have been submitted to Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/, reference series GSE58597).

Transcriptome analyses of primary human naive, Tfh, and Teff cells by RNA-seq

Human primary naive (CD4+CD45RATCRβ+), Tfh (CD4+CD45RATCRβ+PD-1hiCXCR5hiPSGL-1lo), and Teff cells (CD4+CD45RATCRβ+PD-1loCXCR5loPSGL-1hi) were isolated from human tonsils using the sorting strategy described (Figure 1A). A population of T follicular regulatory (Tfr) cells which exhibit a phenotype similar to Tfh cells, that is, CXCR5hi and PD-1hi expression, may be present within our sorted Tfh cell fraction. To quantify the amount of Tfr cells in our sorted Tfh cell population, we performed intracellular staining for Foxp3 in Tfh cells from 5 different tonsils and found that Tfr cells (CD4+CD45RAPD-1hiCXCR5hiPSGL-1loFoxp3+) comprised <0.5% of the tonsillar Tfh cell population (P < .0079; Figure 1B). Thus, the small numbers of Tfr cells found in the Tfh cell sorting gate should not significantly bias our transcriptome and genomic analyses.

Figure 1

FACS. (A) Primary human Tfh, Teff, and naive T-cell populations were isolated from tonsil via FACS as shown. (B) Intracellular staining for Foxp3 was used to identify the percentage of Tfr cells within the Tfh cell population. Representative flow cytometry plots (left) show the percentages of Foxp3+ Tfh or Teff cells in the tonsils using the gating strategy as described in panel A, with data quantified from 5 different patients (right).

Figure 1

FACS. (A) Primary human Tfh, Teff, and naive T-cell populations were isolated from tonsil via FACS as shown. (B) Intracellular staining for Foxp3 was used to identify the percentage of Tfr cells within the Tfh cell population. Representative flow cytometry plots (left) show the percentages of Foxp3+ Tfh or Teff cells in the tonsils using the gating strategy as described in panel A, with data quantified from 5 different patients (right).

Close modal

RNA was isolated and RNA-seq performed to obtain the transcriptome of Tfh, Teff, and naive T cells. Multidimensional scaling was performed on expressed genes (>1 cpm in 3 or more samples) to assess sample relatedness. Samples from each cell type clustered together (Figure 2A), indicating that samples from each cell type were closely related and distinct from the other cell types. Quantitative real-time PCR validated expression levels of representative messenger RNA (mRNA) transcripts detected by RNA-seq (supplemental Table 5). Overall, 11 839, 12 007, and 12 202 transcripts were expressed in Tfh, Teff, and naive T-cell RNA, respectively, with 11 307 expressed in all 3 cell types (supplemental Figure 1).

Figure 2

Transcriptome analyses: human primary Tfh, Teff, and naive T cells have distinct expression profiles. (A) Tfh, Teff, and naive T-cell transcriptomes were obtained by RNA-seq and subjected to multidimensional scaling analysis of expressed genes. Symbols representing 3 or 4 biologic replicates of Tfh (red squares), Teff (blue circles), and naive T cells (green triangles) clustered together, indicating that samples from each cell type are closely related and distinct from the other cell types. (B) Venn diagram display of differentially expressed genes. (C) Heat map display of gene expression patterns of differentially expressed genes. Red represents elevated expression while blue represents decreased expression, compared with the row mean. Each column represents a biologic replicate. Genes displayed in panels B and C were selected based on fold changes of 2 or more and FDR adjusted P value < .05 between cell types. (D) RNA coverage profiles of representative differentially expressed genes. FDR, false discovery rate.

Figure 2

Transcriptome analyses: human primary Tfh, Teff, and naive T cells have distinct expression profiles. (A) Tfh, Teff, and naive T-cell transcriptomes were obtained by RNA-seq and subjected to multidimensional scaling analysis of expressed genes. Symbols representing 3 or 4 biologic replicates of Tfh (red squares), Teff (blue circles), and naive T cells (green triangles) clustered together, indicating that samples from each cell type are closely related and distinct from the other cell types. (B) Venn diagram display of differentially expressed genes. (C) Heat map display of gene expression patterns of differentially expressed genes. Red represents elevated expression while blue represents decreased expression, compared with the row mean. Each column represents a biologic replicate. Genes displayed in panels B and C were selected based on fold changes of 2 or more and FDR adjusted P value < .05 between cell types. (D) RNA coverage profiles of representative differentially expressed genes. FDR, false discovery rate.

Close modal

EdgeR, a Bioconductor software package for examining differential expression of replicated count data, identified the differentially expressed transcripts among the 3 cell types (Figure 2B). These genes were sorted by absolute differences (fold change) in their expression (supplemental Table 6) and heat maps displaying patterns of differentially expressed genes prepared (Figure 2C, supplemental Figure 2). Several of the most differentially expressed genes with increased expression in Tfh cells encoded proteins critical for Tfh cell function including PDCD1, CXCR5, and BCL6 (Figure 2D), validating our sorting strategy. In parallel, several differentially expressed genes, including CCR7 and IL7R, exhibited increased expression in Teff cells, consistent with their phenotype (Table 1). The top 4 functional networks, as assessed by ingenuity pathway analysis (IPA) of differentially expressed genes between Tfh and Teff cells, all with scores ≥30, included cell movement, hematological system development and function, and immune cell trafficking (network 1); cellular development, hematological system development and function, and hematopoiesis (network 2); cell cycle, dermatological diseases, and gastrointestinal disease (network 3); and hematological system development and function, immune cell trafficking, and inflammatory response (network 4). The top categories associated with the category Diseases and Disorders included inflammatory response, connective tissue disorders, skeletal and muscular disorders, inflammatory disease, and immunological disease.

GSEA

AITL is a subtype of PTCL with a molecular signature indicating origin from Tfh cells.20,77-82  To better understand Tfh cell gene expression in AITL, we performed GSEA using a gene set containing genes upregulated in Tfh cells compared with Teff cells. We compared 37 AITL samples from the data set GSE19069,77  to the 60 non-AITL samples, primarily containing other malignancies of T-cell origin, in the data set (supplemental Figure 3). The normalized enrichment score, which reflects the degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes, was 2.02 (P < .00001) indicating highly significant enrichment of Tfh cell–expressed genes in the AITL samples.

H3K4me1, H3K27me3, and H3K27Ac occupancy in Tfh and Teff cell chromatin

ChIP-seq was performed with antibodies for H3K4me1, H3K27me3, and H3K27Ac using primary Tfh and Teff cell chromatin to generate genome-wide maps of histone architecture. The MACS program was used to identify peaks with a cutoff of P < 10e-5. Validation of histone modification enrichment at selected peaks identified by ChIP-seq was performed by quantitative ChIP PCR for all 4 antibodies (supplemental Table 7).

Identification of multiple classes of Tfh and Teff cell enhancers

Enhancers are frequently marked by monomethylation of lysine 4 of histone H3 (H3K4me1), with further classification as active and poised. Active enhancers are dynamic participants in gene expression whereas poised enhancers participate in gene expression in response to various cellular stimuli, for example, differentiation cues. Zentner and colleagues refined this classification, further classifying enhancers as active, poised, and intermediate based on chromatin architecture, conservation, genomic location, levels of gene expression of associated genes, and predicted function of associated genes.83,84 

Using these definitions, we identified and classified Tfh and Teff cell enhancers as active, intermediate, and poised. There were 17 229 active, 28 098 intermediate, and 2055 poised enhancers in Tfh cells and 16 707 active, 14 555 intermediate, and 940 poised enhancers in Teff cells. Aggregate plots of each enhancer class centered on peaks of H3K4me1 demonstrated high amounts of H3K27Ac in active enhancers and enrichment of H3K27me3 in poised enhancers (Figure 3A-C). Heat maps generated by ranked plots averaged across rows of HeK4me1, H3K27Ac, and/or H3K27me3 peaks revealed patterns of distinct chromatin architecture characteristic of the enhancer classes (Figure 3D).

Figure 3

Histone-modification density and enhancer class in human primary Tfh cell chromatin. The signal density of H3K4me1, H3K27Ac, H3K27me3, and background TI chromatin is plotted relative to the H3K4me1 peak. (A-C) The average signal over all enhancers in the active, intermediate, and poised enhancer classes, respectively. (D) Signal for each enhancer in the active (A), intermediate (I), and poised (P) enhancer classes. TI, total input.

Figure 3

Histone-modification density and enhancer class in human primary Tfh cell chromatin. The signal density of H3K4me1, H3K27Ac, H3K27me3, and background TI chromatin is plotted relative to the H3K4me1 peak. (A-C) The average signal over all enhancers in the active, intermediate, and poised enhancer classes, respectively. (D) Signal for each enhancer in the active (A), intermediate (I), and poised (P) enhancer classes. TI, total input.

Close modal

The human genome was portioned into seven bins relative to RefSeq genes corresponding to exons, introns, promoters, distal (-1 to −50kb), downstream (+1 to +50kb), and intergenic regions. Sites of specific histone modifications and enhancer class were assigned to these bins and percentages calculated (Figure 4A). In Tfh cells, poised enhancers were less frequently found in introns, but were found more frequently in the 5′ and 3′ distal regions of associated genes. Similar localization of poised enhancers was observed in Teff cells (Figure 4B).

Figure 4

Distribution of histone modifications, and active, intermediate, and poised enhancers in human primary Tfh and Teff cell chromatin. The human genome was portioned into 7 bins relative to RefSeq genes. The percentage of the human genome represented by each bin was color coded, and the distribution of peaks of each histone modification and enhancer class, active, intermediate, and poised, in each bin graphed on the color-coded bar. (A) Tfh cells. (B) Teff cells. (C) K562 cells are included as a nonlymphocyte, hematopoietic cell type for comparison. TES, transcriptional end site.

Figure 4

Distribution of histone modifications, and active, intermediate, and poised enhancers in human primary Tfh and Teff cell chromatin. The human genome was portioned into 7 bins relative to RefSeq genes. The percentage of the human genome represented by each bin was color coded, and the distribution of peaks of each histone modification and enhancer class, active, intermediate, and poised, in each bin graphed on the color-coded bar. (A) Tfh cells. (B) Teff cells. (C) K562 cells are included as a nonlymphocyte, hematopoietic cell type for comparison. TES, transcriptional end site.

Close modal

Expression and function of genes associated with enhancer classes in Tfh and Teff cells

Typically, cell and tissue-type specific enhancers act over distances of tens to hundreds of kilobases.85  Thus, bona fide Tfh and Teff cell enhancers are expected to be enriched in the genomic vicinity of genes that are expressed and functional in their respective cells.86-88  To determine whether Tfh and Teff cell enhancers are localized in this manner, gene expression in Tfh and Teff cells was correlated with each enhancer class. To exclude gene promoters, localization of H3K4me1 within 1 kb of annotated transcriptional start sites (TSSs) was excluded from the analyses. There was a statistically significant higher expression of genes with active enhancers 1-50 kb from a TSS compared with expression of genes associated with active enhancers >50 kb of a TSS in Tfh and Teff cells (both P values <2.2e-16, supplemental Figure 4A-B). Levels of gene expression of associated genes were highest for active enhancers and lowest for poised enhancers, with levels of expression between these values for intermediate enhancers in Tfh cells 1-50 kb and >50 kb of a TSS.

We also examined whether enhancers were enriched near genes with known Tfh and Teff cell function. We performed a statistical enrichment analysis of functional gene annotations associated with each type of enhancer class.73  Tfh cell active and intermediate enhancers were associated with genes linked to immune cell-related biological functions whereas poised enhancers were associated with genes involved in cellular development and differentiation (supplemental Figure 5A). The top enriched phenotypes linked to genes associated with Tfh cell active enhancers were immune and lymphocyte-related phenotypes (Table 2). Teff cell active enhancers were associated with genes linked to immune signaling, Teff intermediate enhancers were associated with genes linked to immune responses, and poised Teff enhancers were associated with genes linked to transcription (supplemental Figure 5B).

Conservation analyses by enhancer class

Conservation plots using PhastCons conservation scores with the 46-way vertebrate hg19 multiple alignment PhastCons track were constructed for each enhancer class of Tfh and Teff cells. Similar to results previously observed,84  only poised enhancers showed strong conservation in both cell types (supplemental Figure 6).

Motif enrichment

The Homer program was used to identify overrepresented DNA/transcription factor motifs at sites of candidate enhancers. The top overrepresented motifs at sites of active enhancers in Tfh cells were ETS, ZIC2, TLX, and MEF2C with overrepresentation of ETS, RUNX1, and DCE in Teff cells (supplemental Figure 7).

Enhancer classes and biologically relevant SNPs

We explored whether SNPs associated with biologically relevant immune cell traits and with immune cell traits were enriched in Tfh cell enhancers. We used the set of noncoding SNPs from the GWAS catalog of the NHGRI (www.genome.gov/gwastudies),74  and we collected a data set of immune-associated noncoding SNPs. (see “Methods”; there are 1514 SNPs associated with these terms from the GWAS catalog.) Currently, the functional significance of the overwhelming majority of these SNPs is unknown. SNP locations were compared with the locations of Tfh cell enhancers. For active Tfh enhancers, there was association with 321 SNPs in the GWAS catalog with 86 (5.7%) related to immune cell traits (supplemental Table 8). For intermediate Tfh enhancers, there was association of 197 SNPs in the total GWAS catalog with 38 (2.5%) related to immune cell traits. For poised Tfh enhancers, there were no SNPs linked to immune cell traits (supplemental Table 8). Examples of immune disease-associated SNPs with Tfh cell active enhancers are shown in supplemental Figure 8.

A subset of enhancers, called superenhancers or stretch enhancers, important for regulating genes critical for cell type–specific identity, have been described.89,90  Superenhancers span large regions of chromatin, have domains of transcription factor binding sites, and are marked by significant amounts of H3K4me1 and H3K27Ac modification. We identified superenhancers in Tfh cell chromatin as described by finding regions with the highest levels of clustered, K27 acetylated chromatin (Figure 5).89,91  In some cell types, disease-associated SNPs are enriched in superenhancers of relevant cell types, suggesting that altered expression of key cell identity genes may contribute to disease phenotype.90,91  For Tfh cell superenhancers, there was association with 893 SNPs in the total GWAS catalog with 119 SNPs (13%) linked to immune cell traits (supplemental Table 9). Relevant SNPs were found in superenhancers near the MAF, IRF4, and BATF gene loci (Figure 5). For superenhancer-associated SNPs, the majority were associated with rheumatoid arthritis, type 1 diabetes, multiple sclerosis, celiac disease, and ulcerative colitis. Thus, SNPs associated with biologically relevant, disease-associated immune cell traits were significantly enriched in superenhancers compared with active or intermediate Tfh cell enhancers.

Figure 5

Superenhancers in Tfh cells. (A) Distribution of H3K27Ac normalized ChIP-seq signal across Tfh cell enhancers. Superenhancers are shown in red. Select superenhancer-associated genes are labeled. (B) Representative Tfh cell superenhancers associated with immune-related SNPs at 3 gene loci: MAF, BATF, and IRF4. The called superenhancer is denoted by the thick blue line at the top of the figure. The associated SNP is shown below the superenhancer line. The track of H3K27 acetylated chromatin is shown above the associated gene locus.

Figure 5

Superenhancers in Tfh cells. (A) Distribution of H3K27Ac normalized ChIP-seq signal across Tfh cell enhancers. Superenhancers are shown in red. Select superenhancer-associated genes are labeled. (B) Representative Tfh cell superenhancers associated with immune-related SNPs at 3 gene loci: MAF, BATF, and IRF4. The called superenhancer is denoted by the thick blue line at the top of the figure. The associated SNP is shown below the superenhancer line. The track of H3K27 acetylated chromatin is shown above the associated gene locus.

Close modal

Tfh cell type–specific enhancers

To assess the cell-type specificity of the enhancers identified, we compared Tfh enhancers marked by nonpromoter-associated peaks of H3K4 monomethylation to enhancers in 61 different cell types. This identified 1660 enhancers that were present in Tfh cell chromatin but were not present in the other cell types. To further refine cell-type specificity, we next compared enhancers marked by nonpromoter-associated peaks of H3K4 monomethylation in Tfh cells to enhancers in 13 hematopoietic cell types, primarily lymphoid cells. We identified 7166 nonpromoter-associated H3K4me1 peaks in Tfh cell chromatin not present in the 13 other cell types, with 9475 not identified in the 10 lymphoid cell types. Jaccard coefficient clustering revealed that hematopoietic cell enhancers clustered distinctly from human embryonic stem cell enhancers (for comparison) and lymphoid cell enhancers clustered distinctly from other hematopoietic cell enhancers (not shown).

To identify enhancers potentially contributing to differential gene regulation in Tfh and Teff cells, we compared levels of H3K27 acetylation at nonpromoter peaks of H3K4me1 in Tfh and Teff cell chromatin, as relative amounts of acetylation have been correlated with enhancer strength or levels of gene expression.92  There were 1281 differentially acetylated enhancers between the 2 cell types (Figure 6A-B). We then determined whether the genes nearest these differentially acetylated enhancers were also differentially expressed in the associated cell type. There were 43 differentially marked enhancers associated with differentially expressed genes (Table 3) expressed at higher levels in Tfh cells, including PDCD1 and BCL6 (Figure 7), genes associated with Tfh cell function.

Figure 6

Differential histone 3 lysine 27 acetylation in Tfh and Teff cells. Differentially H3K27 acetylated enhancers in Tfh and Teff cell chromatin were identified. (A) The signal density of H3K27Ac was plotted relative to the H3K4me1 peak. (A) The average signal over all differentially acetylated enhancers in Tfh and Teff cells is shown. (B) The signal for each differentially acetylated enhancer in both cell types.

Figure 6

Differential histone 3 lysine 27 acetylation in Tfh and Teff cells. Differentially H3K27 acetylated enhancers in Tfh and Teff cell chromatin were identified. (A) The signal density of H3K27Ac was plotted relative to the H3K4me1 peak. (A) The average signal over all differentially acetylated enhancers in Tfh and Teff cells is shown. (B) The signal for each differentially acetylated enhancer in both cell types.

Close modal
Figure 7

Tfh cell type–specific active enhancers. (A) A differentially acetylated enhancer 5′ of the PDCD1 gene locus in Tfh cells is shown (red bar). Normalized RNA sequencing read density from each cell type at the PDCD1 gene locus is shown below. (B) A differentially acetylated enhancer in intron 1 of the BCL6 gene locus in Tfh cells is shown (red bar). Normalized RNA sequencing read density from each cell type at the BCL6 gene locus is shown below.

Figure 7

Tfh cell type–specific active enhancers. (A) A differentially acetylated enhancer 5′ of the PDCD1 gene locus in Tfh cells is shown (red bar). Normalized RNA sequencing read density from each cell type at the PDCD1 gene locus is shown below. (B) A differentially acetylated enhancer in intron 1 of the BCL6 gene locus in Tfh cells is shown (red bar). Normalized RNA sequencing read density from each cell type at the BCL6 gene locus is shown below.

Close modal

Reporter gene assay of Tfh cell type–specific enhancers

Individual reporter gene plasmids were prepared with representative, differentially acetylated enhancer elements associated with differential gene expression in Tfh cells cloned upstream of an SV40 gene promoter-luciferase reporter gene cassette. These included enhancers associated with the B-cell lymphoma 6 (BCL6), histidine-ammonia lyase (HAL), suppressor of tumorigenicity 14 (ST14), CXXC finger protein 5 (CXXC5), secretoglobin, family 3A, member 1 (SCGB3A1), Dab reelin signal transducer homolog 1 (DAB1), WNK lysine-deficient protein kinase 2 (WNK2), and guanine nucleotide binding protein (G protein), γ 4 (GNG4) genes. Plasmids were transfected into human T lymphoid Jurkat cells, which express all but 1 of the associated genes (supplemental Table 10), cell lysates collected after 2 days, and luciferase activity analyzed. All 7 Tfh cell-specific enhancers directed statistically significant (P < .05) reporter gene activity between 2 and 3.5 times over activity of control (supplemental Figure 9).

Tfh cells are necessary for B-cell maturation into memory and long-lived plasma cells in GCs of B-cell follicles.93  They provide signals to cognate B cells via CD40 ligand, PD-1, and cytokines, including IL-21 and IL-4, promoting B-cell proliferation and affinity maturation within the GC.94-98  Tfh cell development requires the transcription factors Achaete-scute complex homolog 2 (ASCL2) and BCL6, leading to expression of transcripts important for their function, while repressing activation of genes, among them Blimp1 (PRDM1), critical for development of other Th subsets.5,8,9  ASCL2 and BCL6 upregulation also promotes expression of the chemokine receptor CXCR5 necessary for Tfh cell entry into the B-cell follicle following a gradient of its ligand CXCL13.10,11  Genes encoding these proteins were all highly expressed in the Tfh cells we isolated from tonsils.

Our integrative analyses also revealed that several of these genes were associated with Tfh cell type–specific enhancers, including PDCD1, CXCR5, and BCL6, suggesting that these cis elements are critical for Tfh cell identify and function. However, not all key factors exhibited either differential expression at the transcriptome level and/or Tfh cell-specific enhancers. Although a remote enhancer cannot be excluded, no Tfh cell-type enhancers were identified within 100 kb of the ASCL2 gene locus, indicating that additional regulatory factors direct expression of ASCL2 in Tfh cells.

The master regulator BCL6 regulates a unique program of gene expression essential for Tfh cell differentiation and function.5,8,9  BCL6 promotes expression of genes important for Tfh cell migration and function, while repressing critical regulators and microRNAs of other Th subsets.8,9  Similar to their relationship in GC B cells, BLC6 and Blimp1 (PRDM1) are reciprocal and antagonistic regulators of the Tfh cell phenotype.5,9,99-101  The precise mechanism(s) whereby BCL6 controls these processes in Tfh cells is unclear. Numerous functional roles outside of the GC have been described for BCL6, including a late check point function in pre-B cells, generation and maintenance of effector and memory CD8+ and memory CD4+ cells, regulation of effector functions in peripheral Tregs, regulation of Th17 Th cell differentiation, and acting to constrain immune and inflammatory responses in macrophages (reviewed in Bunting and Melnick102 ). We found BCL6 expressed in Tfh, Teff, and naive T cells, with markedly increased expression in Tfh cells. In parallel, our studies also identified a Tfh cell-specific enhancer in the BCL6 gene locus. It will be important to identify the cis-regulatory elements that control BCL6 expression in Tfh cells and other related lineages.

Recent reports indicate that there is heterogeneity in Tfh cells,103,104  including variable populations of Tfh cells circulating in human peripheral blood.105-109  Although Tfr cells were excluded as a major population of the Tfh cells we obtained from tonsil, variable types of Tfh cells were likely included in the bulk population of Tfh cells. In addition, despite phenotypic and transcriptional differences with other CD4+ Th subsets, Tfh cells secrete many common Teff cytokines such as IL-4, IFN-γ and IL-17, implying a complex relationship between Tfh cells and other CD4 T effector lineages and highlighting the plasticity of Tfh cells.110  Further refining these varying cellular populations, for example, by using single-cell transcriptome analyses, will provide insight into T effector cell development, differentiation, and function.111 

AITL is an uncommon subtype of PTCL with a poor prognosis.112  Initial studies revealed a pan T-cell phenotype with expression of Tfh markers including CD10, CXCL13, and PD-1. Gene expression profiling studies identified a specific molecular signature in AITL, indicating origin from Tfh cells,19,77-82  as well as overlap with other, less well-defined PTCL.77,113  Recent genomics-based studies have identified a group of common mutations AITL, including mutations in IDH2, RHOA, TET2, and DNMT3.19,20,114-118  These studies have led to reclassification of subtypes of PTCL and have allowed assignment of diagnostic and prognostic significance to these subtypes.19  Combining detailed transcriptome information provided by RNA-seq with genome-wide mutation analyses will allow further refinement of these lymphoma subtypes, allowing better assignment of disease diagnosis and prognosis, as well as revelation of novel targets for therapeutic strategies.

GWAS studies have identified many SNPs enriched in patients with autoimmune diseases, leading to the identification of many disease-associated loci.119,120  Frequently, specific SNPs are found in more than 1 autoimmune disorder, in line with the observation that some patients suffer from more than 1 such disorder, with certain polymorphisms likely contributing to common causality.121  Most variants identified in GWAS studies are outside coding regions,122  and are enriched for regulatory and transcriptionally functional SNPs.123  Because expansion of dysfunctional Tfh cells is a major contributor to systemic autoimmunity, we examined the relationship between Tfh cell enhancers and superenhancers and SNPs identified in GWAS. We found many SNPs linked to autoimmune diseases by GWAS in Tfh cell enhancers, particularly multiple sclerosis, rheumatoid arthritis, and type I diabetes, with several linked to multiple such illnesses, with even more significant enrichment in Tfh cell superenhancers. The challenge now is to translate the linkage of autoimmune SNPs and Tfh cell enhancers and superenhancers to a better understanding of Tfh cell development and differentiation and to determine the functional significance of variants associated with quantitative traits linked to autoimmune disease.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

This work was supported in part by grants T32HD007094 (Eunice Kennedy Shriver National Institute), R01HL106184, RO1HL65448 (National Heart, Lung, and Blood Institute), T32AR07107, RO1AR040072, R21AR062842, and P30AR053495 (National Institute of Arthritis and Musculoskeletal and Skin Diseases) from the National Institutes of Health and the Alliance for Lupus Research.

Contribution: J.S.W. designed and performed experiments and analyzed data; K.L.-G., Y.M., and M.S. designed and performed experiments; S.C. and Y.Z. performed experiments; V.P.S. analyzed data; and J.C. and P.G.G. designed experiments, analyzed data, and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Joseph Craft, Departments of Medicine and Immunobiology, Yale University School of Medicine, 300 Cedar St, PO Box 208031, New Haven, CT 06520-8031; e-mail: joseph.craft@yale.edu; and Patrick G. Gallagher, Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, 333 Cedar St, PO Box 208064, New Haven, CT 06520-8064; e-mail: patrick.gallagher@yale.edu.

1
Choi
 
YS
Yang
 
JA
Crotty
 
S
Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells.
Curr Opin Immunol
2013
, vol. 
25
 
3
(pg. 
366
-
372
)
2
Crotty
 
S
Follicular helper CD4 T cells (TFH).
Annu Rev Immunol
2011
, vol. 
29
 (pg. 
621
-
663
)
3
Weinmann
 
AS
Regulatory mechanisms that control T-follicular helper and T-helper 1 cell flexibility.
Immunol Cell Biol
2014
, vol. 
92
 
1
(pg. 
34
-
39
)
4
Crotty
 
S
The 1-1-1 fallacy.
Immunol Rev
2012
, vol. 
247
 
1
(pg. 
133
-
142
)
5
Johnston
 
RJ
Poholek
 
AC
DiToro
 
D
et al. 
Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.
Science
2009
, vol. 
325
 
5943
(pg. 
1006
-
1010
)
6
Ramiscal
 
RR
Vinuesa
 
CG
T-cell subsets in the germinal center.
Immunol Rev
2013
, vol. 
252
 
1
(pg. 
146
-
155
)
7
Vinuesa
 
CG
Sanz
 
I
Cook
 
MC
Dysregulation of germinal centres in autoimmune disease.
Nat Rev Immunol
2009
, vol. 
9
 
12
(pg. 
845
-
857
)
8
Yu
 
D
Rao
 
S
Tsai
 
LM
et al. 
The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment.
Immunity
2009
, vol. 
31
 
3
(pg. 
457
-
468
)
9
Nurieva
 
RI
Chung
 
Y
Martinez
 
GJ
et al. 
Bcl6 mediates the development of T follicular helper cells.
Science
2009
, vol. 
325
 
5943
(pg. 
1001
-
1005
)
10
Ansel
 
KM
McHeyzer-Williams
 
LJ
Ngo
 
VN
McHeyzer-Williams
 
MG
Cyster
 
JG
In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines.
J Exp Med
1999
, vol. 
190
 
8
(pg. 
1123
-
1134
)
11
Haynes
 
NM
Allen
 
CD
Lesley
 
R
Ansel
 
KM
Killeen
 
N
Cyster
 
JG
Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation.
J Immunol
2007
, vol. 
179
 
8
(pg. 
5099
-
5108
)
12
Bauquet
 
AT
Jin
 
H
Paterson
 
AM
et al. 
The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells.
Nat Immunol
2009
, vol. 
10
 
2
(pg. 
167
-
175
)
13
Ma
 
CS
Deenick
 
EK
Human T follicular helper (Tfh) cells and disease.
Immunol Cell Biol
2014
, vol. 
92
 
1
(pg. 
64
-
71
)
14
Tangye
 
SG
Ma
 
CS
Brink
 
R
Deenick
 
EK
The good, the bad and the ugly - TFH cells in human health and disease.
Nat Rev Immunol
2013
, vol. 
13
 
6
(pg. 
412
-
426
)
15
Yu
 
D
Vinuesa
 
CG
Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity.
Cell Mol Immunol
2010
, vol. 
7
 
3
(pg. 
198
-
203
)
16
Linterman
 
MA
Rigby
 
RJ
Wong
 
RK
et al. 
Follicular helper T cells are required for systemic autoimmunity.
J Exp Med
2009
, vol. 
206
 
3
(pg. 
561
-
576
)
17
Gaulard
 
P
de Leval
 
L
Follicular helper T cells: implications in neoplastic hematopathology.
Semin Diagn Pathol
2011
, vol. 
28
 
3
(pg. 
202
-
213
)
18
Huang
 
Y
Moreau
 
A
Dupuis
 
J
et al. 
Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas.
Am J Surg Pathol
2009
, vol. 
33
 
5
(pg. 
682
-
690
)
19
Iqbal
 
J
Wright
 
G
Wang
 
C
et al. 
Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project
Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma.
Blood
2014
, vol. 
123
 
19
(pg. 
2915
-
2923
)
20
Lemonnier
 
F
Couronné
 
L
Parrens
 
M
et al. 
Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters.
Blood
2012
, vol. 
120
 
7
(pg. 
1466
-
1469
)
21
Moroch
 
J
Copie-Bergman
 
C
de Leval
 
L
et al. 
Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics.
Am J Surg Pathol
2012
, vol. 
36
 
11
(pg. 
1636
-
1646
)
22
Buder
 
K
Poppe
 
LM
Bröcker
 
EB
et al. 
Primary cutaneous follicular helper T-cell lymphoma: diagnostic pitfalls of this new lymphoma subtype.
J Cutan Pathol
2013
, vol. 
40
 
10
(pg. 
903
-
908
)
23
Battistella
 
M
Beylot-Barry
 
M
Bachelez
 
H
Rivet
 
J
Vergier
 
B
Bagot
 
M
Primary cutaneous follicular helper T-cell lymphoma: a new subtype of cutaneous T-cell lymphoma reported in a series of 5 cases.
Arch Dermatol
2012
, vol. 
148
 
7
(pg. 
832
-
839
)
24
Fu
 
J
Heinrichs
 
J
Yu
 
XZ
Helper T-cell differentiation in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Arch Immunol Ther Exp (Warsz)
2014
, vol. 
62
 
4
(pg. 
277
-
301
)
25
Sankaran
 
VG
Gallagher
 
PG
Applications of high-throughput DNA sequencing to benign hematology.
Blood
2013
, vol. 
122
 
22
(pg. 
3575
-
3582
)
26
Garber
 
M
Grabherr
 
MG
Guttman
 
M
Trapnell
 
C
Computational methods for transcriptome annotation and quantification using RNA-seq.
Nat Methods
2011
, vol. 
8
 
6
(pg. 
469
-
477
)
27
McGettigan
 
PA
Transcriptomics in the RNA-seq era.
Curr Opin Chem Biol
2013
, vol. 
17
 
1
(pg. 
4
-
11
)
28
Trapnell
 
C
Williams
 
BA
Pertea
 
G
et al. 
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Nat Biotechnol
2010
, vol. 
28
 
5
(pg. 
511
-
515
)
29
Fromm
 
G
Bulger
 
M
A spectrum of gene regulatory phenomena at mammalian beta-globin gene loci.
Biochem Cell Biol
2009
, vol. 
87
 
5
(pg. 
781
-
790
)
30
Higgs
 
DR
Vernimmen
 
D
Wood
 
B
Long-range regulation of alpha-globin gene expression.
Adv Genet
2008
, vol. 
61
 (pg. 
143
-
173
)
31
Bulger
 
M
Groudine
 
M
Enhancers: the abundance and function of regulatory sequences beyond promoters.
Dev Biol
2010
, vol. 
339
 
2
(pg. 
250
-
257
)
32
Bulger
 
M
Groudine
 
M
Functional and mechanistic diversity of distal transcription enhancers.
Cell
2011
, vol. 
144
 
3
(pg. 
327
-
339
)
33
Ong
 
CT
Corces
 
VG
Enhancers: emerging roles in cell fate specification.
EMBO Rep
2012
, vol. 
13
 
5
(pg. 
423
-
430
)
34
Borok
 
MJ
Tran
 
DA
Ho
 
MCW
Drewell
 
RA
Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila.
Development
2010
, vol. 
137
 
1
(pg. 
5
-
13
)
35
Xu
 
J
Watts
 
JA
Pope
 
SD
et al. 
Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells.
Genes Dev
2009
, vol. 
23
 
24
(pg. 
2824
-
2838
)
36
Nord
 
AS
Blow
 
MJ
Attanasio
 
C
et al. 
Rapid and pervasive changes in genome-wide enhancer usage during mammalian development.
Cell
2013
, vol. 
155
 
7
(pg. 
1521
-
1531
)
37
Ong
 
CT
Corces
 
VG
Enhancer function: new insights into the regulation of tissue-specific gene expression.
Nat Rev Genet
2011
, vol. 
12
 
4
(pg. 
283
-
293
)
38
Core
 
LJ
Lis
 
JT
Paused Pol II captures enhancer activity and acts as a potent insulator.
Genes Dev
2009
, vol. 
23
 
14
(pg. 
1606
-
1612
)
39
Maksimenko
 
O
Golovnin
 
A
Georgiev
 
P
Enhancer-promoter communication is regulated by insulator pairing in a Drosophila model bigenic locus.
Mol Cell Biol
2008
, vol. 
28
 
17
(pg. 
5469
-
5477
)
40
Mattick
 
JS
Linc-ing Long noncoding RNAs and enhancer function.
Dev Cell
2010
, vol. 
19
 
4
(pg. 
485
-
486
)
41
Ørom
 
UA
Derrien
 
T
Beringer
 
M
et al. 
Long noncoding RNAs with enhancer-like function in human cells.
Cell
2010
, vol. 
143
 
1
(pg. 
46
-
58
)
42
Ørom
 
UA
Shiekhattar
 
R
Long non-coding RNAs and enhancers.
Curr Opin Genet Dev
2011
, vol. 
21
 
2
(pg. 
194
-
198
)
43
Orom
 
UA
Shiekhattar
 
R
Noncoding RNAs and enhancers: complications of a long-distance relationship.
Trends Genet
2011
, vol. 
27
 
10
(pg. 
433
-
439
)
44
Yoo
 
EJ
Cooke
 
NE
Liebhaber
 
SA
An RNA-independent linkage of noncoding transcription to long-range enhancer function.
Mol Cell Biol
2012
, vol. 
32
 
10
(pg. 
2020
-
2029
)
45
Kim
 
T-K
Hemberg
 
M
Gray
 
JM
et al. 
Widespread transcription at neuronal activity-regulated enhancers.
Nature
2010
, vol. 
465
 
7295
(pg. 
182
-
187
)
46
Wang
 
D
Garcia-Bassets
 
I
Benner
 
C
et al. 
Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.
Nature
2011
, vol. 
474
 
7351
(pg. 
390
-
394
)
47
Kowalczyk
 
MS
Hughes
 
JR
Garrick
 
D
et al. 
Intragenic enhancers act as alternative promoters.
Mol Cell
2012
, vol. 
45
 
4
(pg. 
447
-
458
)
48
Guerrero
 
L
Marco-Ferreres
 
R
Serrano
 
AL
Arredondo
 
JJ
Cervera
 
M
Secondary enhancers synergise with primary enhancers to guarantee fine-tuned muscle gene expression.
Dev Biol
2010
, vol. 
337
 
1
(pg. 
16
-
28
)
49
Hong
 
JW
Hendrix
 
DA
Levine
 
MS
Shadow enhancers as a source of evolutionary novelty.
Science
2008
, vol. 
321
 
5894
pg. 
1314
 
50
Krivega
 
I
Dean
 
A
Enhancer and promoter interactions-long distance calls.
Curr Opin Genet Dev
2012
, vol. 
22
 
2
(pg. 
79
-
85
)
51
Zhang
 
Y
Wong
 
CH
Birnbaum
 
RY
et al. 
Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations.
Nature
2013
, vol. 
504
 
7479
(pg. 
306
-
310
)
52
Kieffer-Kwon
 
KR
Tang
 
Z
Mathe
 
E
et al. 
Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation.
Cell
2013
, vol. 
155
 
7
(pg. 
1507
-
1520
)
53
Gibcus
 
JH
Dekker
 
J
The hierarchy of the 3D genome.
Mol Cell
2013
, vol. 
49
 
5
(pg. 
773
-
782
)
54
Wang
 
Z
Zang
 
C
Rosenfeld
 
JA
et al. 
Combinatorial patterns of histone acetylations and methylations in the human genome.
Nat Genet
2008
, vol. 
40
 
7
(pg. 
897
-
903
)
55
Vahedi
 
G
C Poholek
 
A
Hand
 
TW
et al. 
Helper T-cell identity and evolution of differential transcriptomes and epigenomes.
Immunol Rev
2013
, vol. 
252
 
1
(pg. 
24
-
40
)
56
Schmidl
 
C
Hansmann
 
L
Lassmann
 
T
et al. 
FANTOM consortium
The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations.
Blood
2014
, vol. 
123
 
17
(pg. 
e68
-
e78
)
57
Andersson
 
R
Gebhard
 
C
Miguel-Escalada
 
I
et al. 
FANTOM Consortium
An atlas of active enhancers across human cell types and tissues.
Nature
2014
, vol. 
507
 
7493
(pg. 
455
-
461
)
58
Samstein
 
RM
Arvey
 
A
Josefowicz
 
SZ
et al. 
Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification.
Cell
2012
, vol. 
151
 
1
(pg. 
153
-
166
)
59
Vahedi
 
G
Takahashi
 
H
Nakayamada
 
S
et al. 
STATs shape the active enhancer landscape of T cell populations.
Cell
2012
, vol. 
151
 
5
(pg. 
981
-
993
)
60
Hawkins
 
RD
Hon
 
GC
Lee
 
LK
et al. 
Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.
Cell Stem Cell
2010
, vol. 
6
 
5
(pg. 
479
-
491
)
61
Hawkins
 
RD
Larjo
 
A
Tripathi
 
SK
et al. 
Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization.
Immunity
2013
, vol. 
38
 
6
(pg. 
1271
-
1284
)
62
Wei
 
G
Wei
 
L
Zhu
 
J
et al. 
Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells.
Immunity
2009
, vol. 
30
 
1
(pg. 
155
-
167
)
63
Abraham
 
BJ
Cui
 
K
Tang
 
Q
Zhao
 
K
Dynamic regulation of epigenomic landscapes during hematopoiesis.
BMC Genomics
2013
, vol. 
14
 pg. 
193
 
64
Roh
 
TY
Wei
 
G
Farrell
 
CM
Zhao
 
K
Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns.
Genome Res
2007
, vol. 
17
 
1
(pg. 
74
-
81
)
65
Lu
 
KT
Kanno
 
Y
Cannons
 
JL
et al. 
Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells.
Immunity
2011
, vol. 
35
 
4
(pg. 
622
-
632
)
66
Su
 
MY
Steiner
 
LA
Bogardus
 
H
et al. 
Identification of biologically relevant enhancers in human erythroid cells.
J Biol Chem
2013
, vol. 
288
 
12
(pg. 
8433
-
8444
)
67
Subramanian
 
A
Tamayo
 
P
Mootha
 
VK
et al. 
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci USA
2005
, vol. 
102
 
43
(pg. 
15545
-
15550
)
68
Steiner
 
LA
Maksimova
 
Y
Schulz
 
V
et al. 
Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes.
Mol Cell Biol
2009
, vol. 
29
 
20
(pg. 
5399
-
5412
)
69
Karolchik
 
D
Kuhn
 
RM
Baertsch
 
R
et al. 
The UCSC Genome Browser Database: 2008 update.
Nucleic Acids Res
2008
, vol. 
36
 
Database issue
(pg. 
D773
-
D779
)
70
Zhang
 
Y
Liu
 
T
Meyer
 
CA
et al. 
Model-based analysis of ChIP-Seq (MACS).
Genome Biol
2008
, vol. 
9
 
9
pg. 
R137
 
71
Siepel
 
A
Haussler
 
D
Combining phylogenetic and hidden Markov models in biosequence analysis.
J Comput Biol
2004
, vol. 
11
 
2-3
(pg. 
413
-
428
)
72
Siepel
 
A
Bejerano
 
G
Pedersen
 
JS
et al. 
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.
Genome Res
2005
, vol. 
15
 
8
(pg. 
1034
-
1050
)
73
McLean
 
CY
Bristor
 
D
Hiller
 
M
et al. 
GREAT improves functional interpretation of cis-regulatory regions.
Nat Biotechnol
2010
, vol. 
28
 
5
(pg. 
495
-
501
)
74
Hindorff
 
LA
Sethupathy
 
P
Junkins
 
HA
et al. 
Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
Proc Natl Acad Sci USA
2009
, vol. 
106
 
23
(pg. 
9362
-
9367
)
75
Jane
 
SM
Ney
 
PA
Vanin
 
EF
Gumucio
 
DL
Nienhuis
 
AW
Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta-promoter.
EMBO J
1992
, vol. 
11
 
8
(pg. 
2961
-
2969
)
76
Gallagher
 
PG
Liem
 
RI
Wong
 
E
Weiss
 
MJ
Bodine
 
DM
GATA-1 and Oct-1 are required for expression of the human alpha-hemoglobin-stabilizing protein gene.
J Biol Chem
2005
, vol. 
280
 
47
(pg. 
39016
-
39023
)
77
Iqbal
 
J
Weisenburger
 
DD
Greiner
 
TC
et al. 
International Peripheral T-Cell Lymphoma Project
Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma.
Blood
2010
, vol. 
115
 
5
(pg. 
1026
-
1036
)
78
Piccaluga
 
PP
Agostinelli
 
C
Califano
 
A
et al. 
Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation.
Cancer Res
2007
, vol. 
67
 
22
(pg. 
10703
-
10710
)
79
Cuadros
 
M
Dave
 
SS
Jaffe
 
ES
et al. 
Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas.
J Clin Oncol
2007
, vol. 
25
 
22
(pg. 
3321
-
3329
)
80
Martínez-Delgado
 
B
Cuadros
 
M
Honrado
 
E
et al. 
Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas.
Leukemia
2005
, vol. 
19
 
12
(pg. 
2254
-
2263
)
81
Ballester
 
B
Ramuz
 
O
Gisselbrecht
 
C
et al. 
Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas.
Oncogene
2006
, vol. 
25
 
10
(pg. 
1560
-
1570
)
82
de Leval
 
L
Rickman
 
DS
Thielen
 
C
et al. 
The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells.
Blood
2007
, vol. 
109
 
11
(pg. 
4952
-
4963
)
83
Zentner
 
GE
Scacheri
 
PC
The chromatin fingerprint of gene enhancer elements.
J Biol Chem
2012
, vol. 
287
 
37
(pg. 
30888
-
30896
)
84
Zentner
 
GE
Tesar
 
PJ
Scacheri
 
PC
Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions.
Genome Res
2011
, vol. 
21
 
8
(pg. 
1273
-
1283
)
85
May
 
D
Blow
 
MJ
Kaplan
 
T
et al. 
Large-scale discovery of enhancers from human heart tissue.
Nat Genet
2012
, vol. 
44
 
1
(pg. 
89
-
93
)
86
Bernstein
 
BE
Kamal
 
M
Lindblad-Toh
 
K
et al. 
Genomic maps and comparative analysis of histone modifications in human and mouse.
Cell
2005
, vol. 
120
 
2
(pg. 
169
-
181
)
87
Heintzman
 
ND
Hon
 
GC
Hawkins
 
RD
et al. 
Histone modifications at human enhancers reflect global cell-type-specific gene expression.
Nature
2009
, vol. 
459
 
7243
(pg. 
108
-
112
)
88
Ernst
 
J
Kheradpour
 
P
Mikkelsen
 
TS
et al. 
Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature
2011
, vol. 
473
 
7345
(pg. 
43
-
49
)
89
Whyte
 
WA
Orlando
 
DA
Hnisz
 
D
et al. 
Master transcription factors and mediator establish super-enhancers at key cell identity genes.
Cell
2013
, vol. 
153
 
2
(pg. 
307
-
319
)
90
Parker
 
SC
Stitzel
 
ML
Taylor
 
DL
et al. 
NISC Comparative Sequencing Program; National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program Authors; NISC Comparative Sequencing Program Authors
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.
Proc Natl Acad Sci USA
2013
, vol. 
110
 
44
(pg. 
17921
-
17926
)
91
Hnisz
 
D
Abraham
 
BJ
Lee
 
TI
et al. 
Super-enhancers in the control of cell identity and disease.
Cell
2013
, vol. 
155
 
4
(pg. 
934
-
947
)
92
Shlyueva
 
D
Stampfel
 
G
Stark
 
A
Transcriptional enhancers: from properties to genome-wide predictions.
Nat Rev Genet
2014
, vol. 
15
 
4
(pg. 
272
-
286
)
93
King
 
C
Tangye
 
SG
Mackay
 
CR
T follicular helper (TFH) cells in normal and dysregulated immune responses.
Annu Rev Immunol
2008
, vol. 
26
 (pg. 
741
-
766
)
94
Xu
 
J
Foy
 
TM
Laman
 
JD
et al. 
Mice deficient for the CD40 ligand.
Immunity
1994
, vol. 
1
 
5
(pg. 
423
-
431
)
95
Glatman Zaretsky
 
A
Taylor
 
JJ
King
 
IL
Marshall
 
FA
Mohrs
 
M
Pearce
 
EJ
T follicular helper cells differentiate from Th2 cells in response to helminth antigens.
J Exp Med
2009
, vol. 
206
 
5
(pg. 
991
-
999
)
96
Zotos
 
D
Coquet
 
JM
Zhang
 
Y
et al. 
IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism.
J Exp Med
2010
, vol. 
207
 
2
(pg. 
365
-
378
)
97
Linterman
 
MA
Beaton
 
L
Yu
 
D
et al. 
IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses.
J Exp Med
2010
, vol. 
207
 
2
(pg. 
353
-
363
)
98
Good-Jacobson
 
KL
Szumilas
 
CG
Chen
 
L
Sharpe
 
AH
Tomayko
 
MM
Shlomchik
 
MJ
PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells.
Nat Immunol
2010
, vol. 
11
 
6
(pg. 
535
-
542
)
99
Awasthi
 
A
Kuchroo
 
VK
Immunology. The yin and yang of follicular helper T cells.
Science
2009
, vol. 
325
 
5943
(pg. 
953
-
955
)
100
Malissen
 
B
Revisiting the follicular helper T cell paradigm.
Nat Immunol
2009
, vol. 
10
 
4
(pg. 
371
-
372
)
101
Oestreich
 
KJ
Mohn
 
SE
Weinmann
 
AS
Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile.
Nat Immunol
2012
, vol. 
13
 
4
(pg. 
405
-
411
)
102
Bunting
 
KL
Melnick
 
AM
New effector functions and regulatory mechanisms of BCL6 in normal and malignant lymphocytes.
Curr Opin Immunol
2013
, vol. 
25
 
3
(pg. 
339
-
346
)
103
Breitfeld
 
D
Ohl
 
L
Kremmer
 
E
et al. 
Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production.
J Exp Med
2000
, vol. 
192
 
11
(pg. 
1545
-
1552
)
104
Tellier
 
J
Nutt
 
SL
The unique features of follicular T cell subsets.
Cell Mol Life Sci
2013
, vol. 
70
 
24
(pg. 
4771
-
4784
)
105
Chung
 
Y
Tanaka
 
S
Chu
 
F
et al. 
Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions.
Nat Med
2011
, vol. 
17
 
8
(pg. 
983
-
988
)
106
Reinhardt
 
RL
Liang
 
HE
Locksley
 
RM
Cytokine-secreting follicular T cells shape the antibody repertoire.
Nat Immunol
2009
, vol. 
10
 
4
(pg. 
385
-
393
)
107
Chevalier
 
N
Jarrossay
 
D
Ho
 
E
et al. 
CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses.
J Immunol
2011
, vol. 
186
 
10
(pg. 
5556
-
5568
)
108
Morita
 
R
Schmitt
 
N
Bentebibel
 
SE
et al. 
Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion.
Immunity
2011
, vol. 
34
 
1
(pg. 
108
-
121
)
109
Linterman
 
MA
Pierson
 
W
Lee
 
SK
et al. 
Foxp3+ follicular regulatory T cells control the germinal center response.
Nat Med
2011
, vol. 
17
 
8
(pg. 
975
-
982
)
110
Laurent
 
C
Fazilleau
 
N
Brousset
 
P
A novel subset of T-helper cells: follicular T-helper cells and their markers.
Haematologica
2010
, vol. 
95
 
3
(pg. 
356
-
358
)
111
Linterman
 
MA
Liston
 
A
Vinuesa
 
CG
T-follicular helper cell differentiation and the co-option of this pathway by non-helper cells.
Immunol Rev
2012
, vol. 
247
 
1
(pg. 
143
-
159
)
112
Moskowitz
 
AJ
Lunning
 
MA
Horwitz
 
SM
How I treat the peripheral T-cell lymphomas.
Blood
2014
, vol. 
123
 
17
(pg. 
2636
-
2644
)
113
Piccaluga
 
PP
Agostinelli
 
C
Califano
 
A
et al. 
Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets.
J Clin Invest
2007
, vol. 
117
 
3
(pg. 
823
-
834
)
114
Cairns
 
RA
Iqbal
 
J
Lemonnier
 
F
et al. 
IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma.
Blood
2012
, vol. 
119
 
8
(pg. 
1901
-
1903
)
115
Odejide
 
O
Weigert
 
O
Lane
 
AA
et al. 
A targeted mutational landscape of angioimmunoblastic T-cell lymphoma.
Blood
2014
, vol. 
123
 
9
(pg. 
1293
-
1296
)
116
Palomero
 
T
Couronné
 
L
Khiabanian
 
H
et al. 
Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas.
Nat Genet
2014
, vol. 
46
 
2
(pg. 
166
-
170
)
117
Sakata-Yanagimoto
 
M
Enami
 
T
Yoshida
 
K
et al. 
Somatic RHOA mutation in angioimmunoblastic T cell lymphoma.
Nat Genet
2014
, vol. 
46
 
2
(pg. 
171
-
175
)
118
Yoo
 
HY
Sung
 
MK
Lee
 
SH
et al. 
A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma.
Nat Genet
2014
, vol. 
46
 
4
(pg. 
371
-
375
)
119
Ricaño-Ponce
 
I
Wijmenga
 
C
Mapping of immune-mediated disease genes.
Annu Rev Genomics Hum Genet
2013
, vol. 
14
 (pg. 
325
-
353
)
120
Orrù
 
V
Steri
 
M
Sole
 
G
et al. 
Genetic variants regulating immune cell levels in health and disease.
Cell
2013
, vol. 
155
 
1
(pg. 
242
-
256
)
121
Zhernakova
 
A
van Diemen
 
CC
Wijmenga
 
C
Detecting shared pathogenesis from the shared genetics of immune-related diseases.
Nat Rev Genet
2009
, vol. 
10
 
1
(pg. 
43
-
55
)
122
Maurano
 
MT
Humbert
 
R
Rynes
 
E
et al. 
Systematic localization of common disease-associated variation in regulatory DNA.
Science
2012
, vol. 
337
 
6099
(pg. 
1190
-
1195
)
123
Schaub
 
MA
Boyle
 
AP
Kundaje
 
A
Batzoglou
 
S
Snyder
 
M
Linking disease associations with regulatory information in the human genome.
Genome Res
2012
, vol. 
22
 
9
(pg. 
1748
-
1759
)

Author notes

J.C. and P.G.G. are senior authors.

Sign in via your Institution